GOAT: Automated Concurrency Analysis and
Debugging Tool for Go
Paper Type: Tool / Benchmark

Abstract—The use of increasing levels of parallelism and
concurrency in the system design—especially in a feature-rich
language such as Go—demands effective concurrency debugging
techniques that are easy to deploy in practice. We present GOAT,
a combined static and dynamic concurrency testing and analysis
tool that facilitates the process of debugging for real-world pro-
grams. Key ideas in GOAT include 1) automated dynamic tracing
to capture the behavior of concurrency primitives, 2) systematic
schedule space exploration to accelerate the bug occurrence and
3) deadlock detection with supplementary visualizations and
reports. We also propose a set of coverage requirements that
characterize the dynamic behavior of concurrency primitives
and provide metrics to measure the quality of tests. Evaluation
of GOAT on 68 curated real-world bug scenarios demonstrates
that GOAT is significantly effective in detecting rare bugs, and its
schedule perturbation method based on schedule yielding detects
these bugs with less than three yields. These results together with
the ease of deploying GOAT on real-world Go programs hold
significant promise in the field-debugging of Go programs.

Index Terms—golang, concurrency, testing coverage analysis

I. INTRODUCTION

Go [1] is a statically typed language initially developed
by Google. It employs channel-based Hoare’s Communicating
Sequential Processes (CSP) [2] semantics in its core and
provides a productivity-enhancing environment for concurrent
programming. Go enjoys accelerating acceptance in a wide va-
riety of communities including container software systems [3],
[4], distributed key-value databases [5], [6], and web server
libraries [7]. It involves shared memory, message passing,
non-deterministic message reception and selection, dynamic
process creation, and programming styles that tend to create
thousands of goroutines (i.e., application-level threads) and
discard them to be garbage collected when they reach their
final state. The combination of these features is well known
for Go’s popularity, yet they also make Go challenging to
debug. Our work is especially relevant considering that there
are no widely practical tools for debugging concurrent Go;
even well-curated concurrency bug benchmark suites are only
just now beginning to appear [8], [9].

In general, concurrent bugs are notoriously difficult to find
and reproduce due to the non-deterministic choices that the
scheduler makes during execution. In Go, constructs like select
and buffered channels entangle the process of debugging by
introducing extra randomness to the dynamic behavior of
the program. Recent static [10]-[13] and dynamic [14]-[18]
techniques have been proposed to address these challenges.
GoBench [9] gathers a collection of real concurrency bugs

(GoReal) and simplified bug kernels (GoKer) from the top 9
open-source projects written in Go and evaluated the effec-
tiveness of such techniques in detecting the bug collection.
Although static methods are proved to be rigorously effective
in detecting flaws in small programs, they are not practical
for realistic programs and often produce false positives. On
the other hand, dynamic analysis approaches cover a more
significant subset of real-world programs by constructing and
analyzing an execution model. However, they focus on a
specific class of bugs based on the symptom or cause of the
bug. Also, for large codebases with thousands of LOC, it is
non-trivial to capture an accurate dynamic execution model
using source instrumentation or source-to-source translation.
Furthermore, our experiments (section IV) observe that some
buggy programs take more than 1,000 runs under different
schedules before the bug is hit. Concurrent testing meth-
ods [19] are proposed to complement static and dynamic
approaches in tackling challenges of concurrent debugging. To
the best of our knowledge, there exist no such testing methods
applicable to Go.

We implemented GOAT (Go Analysis and Testing), a de-
bugging framework for concurrent Go applications to address
this lack. GOAT (figure 1) combines static and dynamic
approaches to automatically analyze the behavior of concurrent
components and facilitate the process of testing and debugging
Go applications. Several classic ideas from literature are
combined with novel ones to support modern concepts of Go
in GOAT, which pursues three primary objectives:

Objective 1: Accurate Dynamic Execution Modeling— In
order to study the behavior of concurrent components and
track the state of the program during execution, a dynamic
execution model has to be constructed and compared against
a predefined model (e.g., formally defined specifications or
the developer’s mental representation of the program). Since
a bug might occur at various levels of abstraction, whole-
program dynamic tracing provides a practical and uniform way
to track multiple facets of the program during execution [20].
We have enhanced the built-in tracing mechanism of Go to
capture the dynamic behavior of concurrency primitives in the
form of a sequence of events, namely execution concurrency
trace or ECT. Each event in ECT represents an action that
corresponds to exactly one statement in the source code. An
ECT provides a detailed model of how a concurrent program
behaves dynamically and assists debugging procedures (e.g.,
bug detection, root-cause analysis, execution visualization).

Static Coverage
Conc. Usage Coverage
Model M | | Requirements
Program P Traverse
Source Files AST -
T Ylglq ha_nders Program P
injection Instrumented

Dynamic Offline Analysis
GoAT Runtime Coverage
Measurement
ECT
GoAT API (Deadlock/Leak
Detection No

C

Figure 1: GOAT Overview

Our experiments show that by replaying the program’s ECT,
GOAT detects all blocking bugs of GoKer [9] many of which
are undetected by existing debugging tools.

Objective 2: Systematic Exploration of Schedule-Space—
Since the scheduler’s non-deterministic behavior is the primary
reason for Heisenbugs (i.e., errors that are uncommon to
occur and hard to reproduce), these bugs may not manifest
during conventional testing. By adopting ideas from systematic
concurrency testing approaches [21]-[32], we perturb the
native scheduler of Go to explore the unconventional but
feasible execution interleaving. First, we statically identify the
source location of concurrency primitive usages in a given
program. We then inject handlers these locations to randomly
(with a certain probability and within a bound) decide if the
current goroutine should continue executing or yield to other
goroutines to execute first. Such yields change the blocking
behavior of the program within the space of feasible states
and exercise untested interleavings, consequently heighten the
propensity for bug detection. The results of our experiments
indicate that just a few random schedule perturbations can
accelerate the exposure of rare bugs.

Objective 3: Testing Quality Measurement— A test suite’s
thoroughness is often judged by the coverage of certain aspects
of the software, such as its source-code statements (a higher
statement coverage indicates more thorough testing). In the
context of concurrent software, exisiting coverage metrics [29],
[30], [33], [34] characterize (quantify) the behavior of con-
currency primitives which enables the quality measurement
of schedule-space exploration. Such characterizations involve
defining an initial set of requirements and a method for
assessing whether or not those requirements are met during
testing. Since Go combines traditional synchronization and
serialization primitives (mutex, conditional variables) with
message-passing and introduces new concepts such as select-
case, new coverage requirements are required to characterize
the behavior of Go concurrency. Using the GOAT’s infras-
tructure, we studied the underlying causes of bugs in GoKer
benchmark [9] and proposed a set of coverage requirements
that 1) coherently characterize the dynamic behavior of con-
currency primitives under various scheduling scenarios and
2) enable measurement of schedule-space exploration until
reaching a threshold, or exposing the bug. By analyzing the
test’s ECT, we can identify if coverage requirements are
met during testing. We demonstrate that our novel coverage
metric is effective in measuring the schedule-space exploration

progress.

To summarize, here are our main contributions:

o We introduce GOAT, a testing and analysis framework
that facilitates whole-program trace collection (via an en-
hancement to the standard tracer package) and knowledge
discovery about the program’s dynamic behavior.

o We show the effectiveness of controlled preemptions for
concurrency bug exposure in the context of a real-world
language

« We propose a set of coverage requirements that character-
ize the dynamic behavior of concurrency primitives, en-
abling measurement of quality and progress of schedule-
space exploration.

The rest of this paper is as follows: Section II discusses
the fundamentals about concurrency debugging in Go and
ideas behind GOAT. Section III illustreate the design and
implementation of GOAT’s components. The evaluation of
GOAT on GoKer bug benchmark is illustrated in section IV.
Section V discusses the related work and finally, section VI
summarizes and concludes.

II. BACKGROUND

A. Go Concurrency

Go introduces a new concurrency model, mixing shared-
memory features of languages like Java/C/C++ and message-
passing concepts such as Erlang’s, with an ad-hoc sched-
uler that orchestrates Go’s concurrent components interactions
while shielding the user from many low-level aspects of
the runtime. The language is equipped with a rich vocabu-
lary of serialization features to facilitate the memory model
constraints [35]; they include synchronous and asynchronous
communication, memory protection, and barriers for efficient
synchronization:

« Goroutines are functions that execute concurrently on

logical processors having their own stacks.

« Channels are typed conduits through which goroutines
communicate. Channels are unbuffered by default, pro-
viding synchronous (rendezvous) or asynchronous (via
buffered channels) messaging between goroutines.

« Synchronization features such as (RW)mutex, wait-
Group, conditional variables, and select are included in
the language to provide more and flexible synchroniza-
tion, data access serialization, and memory protection.

o Scheduler maintains goroutines in FIFO queues and
binds them on OS threads to execute on processing cores.

package main
import "sync"

15 func Monitor (cnt *Container) {

Status
Change

Status ‘

: ‘ Monitor ‘ Change

16 for :
£ Contai £ £ 17 s;lect{ : select
ype Container struct{ 18 case <- cnt.stop: lock
sync.Mutex 19 return : send
stop chan struct{} 20 default: . X
} 21 cnt.Lock () : |O(§k bleek
22 cnt.Unlock () : bioek
func main() { 23 138
container := &Container{ 24 functS‘iatE:‘??hange(cnt *Container) {
. 25 cnt.Loc
M SFEP : maket(cl.lan struct{})} 26 defer cnt.Unlock ()
go Monitor (container) . 27 cnt.stop <- struct{}{}
go StatusChange (container) 2 }
J Succseful Leak

Listing 1: Simplified version of bug moby28462

This design facilitates the construction of data flow models
that efficiently utilize multiple CPU cores and encourages
developers to share memory through communication for safe
and straightforward concurrency and parallelism. This rich
mixture of features has, unfortunately, greatly exacerbated the
complexity of debugging. In fact, the popularity of Go has
outpaced its debugging support [8], [9], [36]. There are some
encouraging developments in support of debugging, such as
a data race checker [14] that has now become a standard
feature of Go and has helped catch many a bug. However, the
support for blocking bugs such as deadlocks and Go-specific
bug-hunting support for Go idioms (e.g., misuse of channels
and locks) remain insufficiently addressed.

Listing 1 shows a simplified version of a reported bug
in Docker [37]. An instance of the Container type (lines
4-7) is created in the main function (lines 10-11). In line
12, a goroutine is spawned to execute function Monitor
that continuously checks the container status and returns
once it receives from the container’s channel (lines 18-19).
The default case of the select statement (line 20) allows
Monitor to continue monitoring without getting blocked on
the channel receive (line 18). Concurrent to the main and
Monitor goroutines, another goroutine is created in line 13
to execute function StatusChange which changes the status
of the container by sending to the container’s channel. The
container’s lock is released after the send action completes
and function returns (defer statement in line 26).

Native execution of this program terminates successfully
without issuing any error or warning. Based on the Go
specification and memory model, there is no constraint on
the goroutines spawned from the main function to join back
before the main goroutine! terminates. A deadlock detector
within the runtime periodically checks that the scheduler
queues of all runnable goroutines never become empty until
the main goroutine terminates. In other words, the runtime
throws a deadlock exception when the main goroutine is
blocked, and no other goroutine is in the queue to execute
(i.e., global deadlock). Since there is no blocking instruction

!In the remainder of the paper, we use main function and main goroutine
interchangeably.

in the main goroutine in listing 1, the program terminates
successfully regardless of other goroutines’ statuses. However,
this program suffers from a common bug in concurrent Go
where one or more goroutines leak(i.e., partial deadlock) from
the execution (i.e., never reach their end states).

The right side of the listing displays a successful run
and a leak situation of the program. In the leak situation,
first, the Monitor goroutine executes the select statement
and, based on the available cases, picks the default case
to execute. Right before the execution of mutex lock (line
21), the scheduler context-switches and the StatusChange
goroutine starts its execution through which it holds the lock
and blocks on sending to the channel (line 27) since there
is no receiver on that channel. Upon blocking on send, the
scheduler transfers back the control to the Monitor goroutine
that tends to acquire the mutex, but because the mutex is
already held by StatusChange, the Monitor goroutine
also blocks. The circular wait between the container mutex and
channel prevents both spawned goroutines from reaching their
end states and leaves the program in an unnoticed deadlock
situation.

B. Concurrency Bugs in Go

Based on a proposed bug taxonomy for Go [8], bugs are cat-
egorized separately based on their causes (shared-memory vs.
message-passing) and symptoms (blocking vs. non-blocking).
Blocking bugs historically refer to situations where one or
more processing units (e.g., goroutines) are blocked, waiting
for an external signal to resume (e.g., leak situation in listing
1). The observed causes of such blocking flaws in the context
of Go are as follows:

o Resource deadlocks: Go inherits resource deadlocks from
multithreaded languages like Java and C/Pthreads where
goroutines are trapped in a circular wait for the resource
(e.g., mutex) that is held by other goroutines.

o Communication deadlocks: Synchronized (unbuffered)
channels transmit values from one goroutine to another in
a rendezvous fashion. The sender (receiver) blocks until
the receiver (sender) is ready to receive (send). Misuse of
channel operations might result in one or more goroutines
waiting for a sender/receiver to unblock them forever.

o Mixed deadlocks: The leak situation in listing 1 is the ex-
ample of such deadlocks where one goroutine is blocked
on acquiring a resource that is held by another goroutine
which is blocked on communication.

Similar to other concurrent languages, Go has non-blocking
bugs such as data races and atomicity violations while in-
troducing new bug idioms due to its new concepts such as
anonymous functions [8]. This work focuses on blocking
bugs?.

In addition to the non-deterministic nature of concurrent
languages caused by the scheduler and interaction between
concurrent components, Go introduces some level of non-
determinism at the application level. The select-case state-
ment (similar to switch-case) allows the goroutine to wait
on multiple channel operations. The runtime picks one case
pseudo-randomly among available cases (i.e., channel sends
and receives that are ready to execute without blocking). If
none of the cases are ready, the executing goroutine is blocked
unless there is a default case. The default case makes the select
non-blocking and prevents the goroutine from waiting for
unavailable communications. Such random behavior expands
the interleaving space, and it grows exponentially when nested
selects are employed in conjunction with nested loops. As a
result, tracing the cause of a program’s misbehaved execution
becomes increasingly tricky. Our observations (section IV)
demonstrate that select statements are involved at the center
of many rare bugs.

C. Accelerating Bug Exposure

Blocking bugs are primarily caused by the non-deterministic
decisions that the scheduler makes. Such bugs may not man-
ifest themselves in conventional testing and are difficult to
reproduce. Figure 2 displays the histogram of 68 blocking bug
kernels grouped by the number of trials that GOAT takes to
detect them. Approximately 30% of bugs required more than
one execution to happen and be detected by GOAT3. Stress
testing is a common way to detect such rare bugs by exer-
cising the scheduler and examine the program’s behavior in
many executions. However, such testing is inefficient because
some interleavings might get tested repeatedly while other
feasible interleavings remain untested. It has been empirically
demonstrated that a small amount of randomness in each
test execution can drastically reduce the number of iterations
needed to find concurrency bugs [22], [23]. For instance,
forcing context-switches before synchronization/serialization
operations in concurrent programs increases the probability of
finding rare concurrent bugs [24]. In listing 1, a rare context-
switch after the select statement in line 17 causes the lock
operation on mutex m in line 21 of goroutine Monitor
to block goroutine StatusChange on locking m in line
25 and causing a deadlock. Concurrency primitive usages
(e.g., channel send/recv, mutex lock/unlock, select) are the

2Throughout this work, leaks (partial deadlocks) and global deadlocks are
interchangeably referred as deadlocks as a general term for blocking bugs.

3The figure and numbers are obtained from trials of GOAT on native
execution of bug kernels without any randomization (i.e., D = 0).

50
40
30

20

, -
[1] [2-10) [10-100) [100-1000)

Figure 2: Distribution of number of trials falling into given
intervals to detect 68 blocking bugs in GoKer [9] using GOAT
(DO)

critical points in the program because their behavior directly
impacts the blocking behavior of Go programs. In GOAT, we
statically identify such critical points and inject yield handlers
before each concurrency primitive usage. During execution,
the handlers randomly decide if the current goroutine should
yield to other goroutines to execute. Results in section IV show
that such simple yields are effective in detecting rare bugs.

D. Testing Coverage Analysis

To demonstrate that testing has been thorough, coverage
metrics are defined to measure the progress of tests and specify
testing termination conditions. Coverage metric for the set of
testing executions 7 is a set of requirements R that should get
covered during testing iterations. We say requirement R; € R
is covered during testing iteration ¢; € T if we can correlate
an action during execution of t¢; to R;. For example, in
statement coverage, which is a widely-used metric in testing
sequential software, R is the set of source locations (file and
line numbers) in the target program. R; is covered by test
execution t if the statement at location R; is executed in ¢. The
coverage percentage of a test T is the ratio of the requirements
covered by at least one execution over the number of all
requirements (|R|).

In the context of concurrent software testing, coverage
metrics are proposed to quantify the quality of search space ex-
ploration. Synchronization coverage metrics such as blocking-
blocked [29], blocked-pair-follows [33] and synchronization-
pair [30] defined requirements to cover during testing for
exposing blocking bugs (e.g., deadlocks). For example, the
synchronization coverage model in [29] defines blocking and
blocked requirements per each synchronized block (i.e., mu-
tually exclusive section of the code that is protected by a
lock). The purpose of this requirement is to check if a test can
report when there is a lock contention for two or more threads
entering the synchronized block. That is, a thread is either
blocked from entering the synchronization block or blocking
other threads from entering by holding the lock.

The existing concurrency coverage metrics are primarily in
the context of Java and C/Pthreads. They are not necessarily
applicable to languages like Go, as such languages have dif-
ferent concurrency primitives and semantics. Novel coverage

metrics are required to enable the quantification of interleaving
space exploration. Bron et al.,[38] enumerates four major
characteristics for coverage metrics to gain acceptance:

1) Static model: A static model of requirements from the
given program should be constructed by instrumenting the
source code. The model should be well-understood by the
developer or tester before execution. The model should
maintain covered requirements during testing executions.

2) Coverable and measurable requirements: The absolute
majority of requirements should be realistic enough to be
coverable during testing. For a few that are not coverable
(due to program semantics) or not measurable (because
of technical limitations), the developer should be aware
of the reason.

3) Actions for uncovered requirements: After testing
terminates, every uncovered requirement should yield
an action (e.g., extending testing iterations or removing
dead code from the program, thus removing uncoverable
requirements)

4) Coverage satisfaction: Some action should be taken
upon reaching a threshold of coverage percentage (e.g.,
testing phase termination when reaching 100% statement
coverage)

Defining a new coverage metric to satisfy the above char-
acteristics requires an accurate and proper mental model of
target bugs. Using the GOAT’s infrastructure, we studied the
underlying causes of many bugs, including GoKer bench-
mark [9] and propose a set of coverage requirements that
enables extensive analysis of dynamic behavior of concurrency
primitives under various scheduling scenarios. In section III-C,
we describe our proposed coverage metric for testing concur-
rent Go, which is extensible to all concurrent languages.

III. DESIGN AND IMPLEMENTATION
A. Overview

Figure 1 displays the overview of GOAT. Given a program
P (i.e., a set of Go source files with a main function), GOAT
automatically instruments P and constructs static and dynamic
models to facilitate the investigation of non-deterministic
interactions between concurrent components (i.e., concurrent
behavior) of P, and achieve objectives introduced in section I.
Static Analysis: (section III-B)— GOAT statically constructs
a model M which is a table of source locations (files and line
numbers) associated with concurrency primitive usages in P
source files. The primary use of M is to identify locations in
P as potential points for manipulating the schedule to explore
possible scenarios and accelerate the discovery of rare bugs.
Yield handlers are injected before each entry in M to decide if
the following concurrency action (e.g., message send or mutex
lock) should perform or yield to other goroutines. Such yields
effectively perturb the scheduler and execute feasible but rarely
taken interleavings of P.
Coverage Requirements: (section III-C)— Forcing the sched-
ule perturbation is effective for exploring the feasible interleav-
ing space until the bug is hit. However, a metric is required

to evaluate the quality of interleaving space exploration and
measure the progress until reaching a threshold. Following
the tenets of effective coverage metrics, we employ M to
emulate the possible behavior of concurrent components of
P and define a set of coverage requirements as indicators
for quality and progress of schedule space exploration. The
requirements are defined so that, during testing, uncovered
requirements demands the user to fix the bug or remove the
dead code.

Dynamic Analysis: (section III-D)— To gain insight into
the concurrent behavior of P and measure the covered re-
quirements, we equipped GOAT with a dynamic tracing
mechanism, which is an extension to the Go standard tracer
package [39]. When tracing is enabled, an execution concur-
rency trace (ECT) file is generated once the execution of P
terminates (e.g., successfully exits, fails, times out). ECT is
a totally ordered sequence of events that contain information
about the dynamic behavior concurrent components, enabling
offline analysis of P’s execution.

Offline Analysis: (section III-E)— In offline, GOAT first sep-
arates the application-level events of ECT from the underlying
runtime system of Go. Then, it constructs a goroutine tree
from application-level goroutines to check if any goroutine
has leaked/blocked (i.e., did not reach its final state) after the
execution termination. Additionally, GOAT maintains a global
goroutine tree for P and maps goroutines from run to run
to accumulate the covered requirements from each execution
of P. As soon as a bug is detected or the coverage exceeds
a threshold, GOAT stops running and produces reports for
manual analysis by the user.

B. Static Analysis

1) Concurrency Usage Model: GOAT statically constructs
a model M from the usage of concurrency primitives in P files
which enables uniform analysis during testing iterations. M is
a table of source locations (files and line numbers) associated
with concurrency usages (CU). We define CU as a triple of
(f,1,k) where f is the file name, [is the line number, and
k is the concurrency primitive used in the code location. k €
Channel U Sync U Go where:

e Channel = {send, receive, close}

e Sync = {lock, unlock, wait, add, done, signal,

broadcast}

e Go = {go, select, range}

GOAT constructs M by traversing the abstract syntax tree
(AST) for each file in P using the Go AST package [40]. The
first column of table III shows the CU locations extracted from
program in listing 1.

2) Source Instrumentation: We employ M entries to instru-
ment P with tracing and schedule perturbation mechanisms.
First, we traverse the AST of P and inject three statements
(i.e., AST nodes) to the beginning of P’s main function to
enable end-to-end tracing:

e goat_done := goat.Start () initializes GOAT,

enables tracing, and returns a channel as a conduit
between application space and GOAT.

e go goat.Watch (goat_done) spawns a new gor-
outine as a watchdog for checking the liveness of the
program (in case of global deadlock or infinite loop). The
watchdog goroutine either receives from goat_done
and sends back an ack signal or timeouts (default: 30
seconds). Then it stops tracing, flushing the trace buffer,
and terminates.

e defer goat.Stop (goat_done) sends a value to
the watcher goroutine after main returns and signals that
the program is finished. Then GOAT waits to receive the
signal from the watcher, then stops tracing and terminates.

Moreover, we inject goat .handler () statements before
each CU in M to manipulate the native scheduler around
concurrency primitve usages. goat .handler () is a func-
tion invocation that randomly calls runtime.GoSched ()
within a bound D to preempt the processing core from current
goroutine and push the goroutine to the back of the global
queue of runnable goroutines. When D = 0, GOAT does not
perturb the scheduler and lets P to execute natively. For any
D > 0, GOAT manipulates application-level goroutines from
their regular execution D times. Our experiments (section I'V)
demonstrate that the optimum value for D is not larger than
3, showing that even a small number of yields is effective in
exposing the bug (as also shown in [24]).

C. Coverage Requirements

Based on our investigations from the execution of Go
applications and bug kernels, we emulate the possible behavior
of concurrent components by defining a set of coverage
requirements (summarized in table I):

o Reql (Send/Recv): {blocked, unblocking, NOP}
— Goroutine G either is blocked on a channel send
(receive) if the receiver (sender) goroutine G is not
ready, or is umblocking the waiting receiver (sender)
goroutine G2. A channel send or receive might also
be neither blocked nor unblocking (NOP) for buffered
channels.

o Req2 (Select-Case): {blocked, unblocking, NOP}
x {case;} —cases of select statements are channel sends
and recives (or default case for non-blocking selects). For
all select statements that has no default case, we obtain
the cases of each select statement at runtime and maintain
an instance of requirement Reql per case.

» Req3 (Lock): {blocked, blocking} — Goroutine G;
either is blocked when locking a mutex because another
goroutine has locked the mutex or is blocking other
goroutines from acquiring the mutex lock.

« Req4 (Unblocking): {unblocking, NOP} — The gor-
outine that is performing one of the unblocking actions
such as channel close, mutex unlock, conditional variable
signal and broadcast, waitGroup done, and non-blocking
select case (send or receive) either unblocks one or more
blocked goroutines or has no effect (NOP).

« Req5-Go: {NOP} — We emit a NOP action for each
goroutine creation to indicate its coverage during testing.

Table I: Coverge requirements defined for concurrent Go

Coverage Concurrent Coverage Requirement Types
Requirements Action Blocked | Unblocking =~ Blocking | NOP
Req. 1: Send/Recv SEND % ‘ .
RECV * * *
Req. 2: Select-Case gﬁggi :SRIIEEIE?) « « «
Req. 3: Lock LOCK * *
CLOSE * | *
UNLOCK * *
Req. 4: Unblocking | SIGNAL * *
BRDCST * *
NB-SELECT * *
Req. 5: Go Go *

With the help of GOAT’s infrastructure, our implemntation
of the proposed requirements satisfy the characteristics of an
“acceptable” coverage metric because:

1) A static model M from program P is obtained by identify-
ing its CU points. M is easy to understand by developers
and reflects the concurrent behavior of P.

2) The defined requirements are measurable by analyzing
the test’s ECT. A global data structure maintains the
covered requirements by each ¢t € T.

3) Upon completion of 7 iterations, the uncovered re-
quirements imply some meaningful information about
the behavior of P. For example, if a send is always
performing as unblocking and never as blocked, it means
that the receiver always performs receive before the
sender reaches its send instruction. In other words, the
receive action always happen-before send action. This
communication pattern might be part of P’s semantics
and matches the developer’s expectations (e.g., a set of
goroutines are listening on a channel to perform non-
frequent requests). Otherwise, the uncovered requirement
“send-blocked” reflects a bug or flaw in the program.

4) Since GOAT can detect occurred blocking bugs and main-
tain a global coverage model, 7 iterations terminate either
by detecting a bug or reaching a percentage threshold.

D. Dynamic Concurrency Tracing

The standard execution tracer package [39], [41] provides
dynamic tracing for the construction of execution models from
the interactions of processors, OS threads, goroutines, the
scheduler, and the garbage collection mechanism. The tracing
mechanism is compiled into all programs always through the
runtime and is enabled on demand to study perfromance bottle-
necks through visualizers like pprof [42]. The alphabet of trace
events is total of 49 events [43], categorized and summarized
in table II. Although the event vocabulary is rich enough to
model comprehensive goroutine latency and blocking behavior
accurately, the vocabulary lacks concurrency primitive usage
events for the construction of concurrency models. We enrich
the standard tracing mechanism with 14 additional events to
enable the production of dynamic models from the program’s
concurrency behavior:

o Channel: For each channel operation (make, send, re-
ceive, close), ECT includes an event with a unique id
assigned to each channel.

Table II: Event categories by the Go execution tracer

Category Description

Process Indication of process/thread start and stop

GC/Mem Garbage collection and memory operation events
Goroutine | Goroutines events: create, block, start, stop, end, etc.
Syscall Interactions with system calls

Users User annotated regions and tasks (for bounded tracing)
Misc System related events like futile wakeup or timers

Table III: Concurrency Usages and coverage requirements of
program in listingl

CU of list. 1 Coverage Requirements Covered by Overall
Line Kind & q run #1 | run #2 | Covered
12 20 covered v Go v Go v
13 20 covered v Go v Go v
. c-recv-blocked vVai v
17 select c-recv-unblocking v a1 v
blocked Va1 v
21 | loclk blocking Vaent v
2 unlock unblocking Vaent v
no_op
blocked v a2 v
25 ok ocking Va2 v
blocked \/(;2 v/(;z v
26 send unblocking
no_op
R unblocking
27 unlock ™0_0p Ve v
Coverage % 60% 33% 73%

o (RW)Mutex, WaitGroup & Conditional Variables:
Similar to channels, we assign a unique id to each
concurrency object and emit an event for each of their
operations (lock, unlock, rlock, runlock, add, wait, signal,
broadcast).

o Select & Schedule: The scheduler and the select structure
introduce non-determinism to the execution. We keep
track of the decisions made by the scheduler and select
statements to obtain an accurate decision path.

We call the output of enhanced tracer execution concurrency
trace (ECT). ECT is a totally ordered sequence of events in
which the order is approximated through a central clock with
nanosecond precision. ECT also contains the call-stack for
each event, enabling a direct mapping of events to source-line
numbers. For each blocking operation (channels sends/recvs,
mutex locks, waitGroup/conditional variable wait and select
(when none of the cases are available)), ECT captures a pair of
pre-operation and post-operation events to distinguish between
the request for action and completion of action. Hence, ECT is
especially effective for debugging because it enables modeling
the blocking state of concurrent components at any given step
of program execution. The enhanced dynamic tracing also
enables the measurement of coverage requirements in offline
(section III-E).

E. Offline Analysis

In the lifetime of Go programs’ executions, the runtime
system creates new goroutines or pick from the pool of dead
goroutines to perform various tasks such as bootstrapping
the program, garbage marking and sweeping, and tracing.
GOAT also adds an extra goroutine to watch the program
execution in case of the main goroutine blockage. These
goroutines are captured during tracing, but our focus is on

GO (main)

Created at: -
Holds:

Blocks on:

Last event: Gosched

v v

G1 (Monitor) G2 (statusChange)

Created at: moby28462:12
Holds:

Created at: moby28462:13
Holds:

(M1) lock@moby28462:21
Blocks on:

(Chl) send@moby28462:26
Last event: Block-send

Blocks on:
(M1) lock@moby28462:21
Last event: Block-Sync

Figure 3: Goroutine tree of the leak situation in listing 1

the goroutines created from within the application. The distin-
guishment between runtime goroutines and application gorou-
tines is essential to define the boundaries of the application
and separate them from the underlying system. We say a
goroutine is an application-level goroutine if it is the main
goroutine (that executes the main function) or it has all of the
following conditions: 1) its ancestor is the main goroutine,
2) it is not a Go runtime system goroutine, and 3) it is not
a tracer goroutine. These conditions are assessed for every
captured goroutine in ECT by checking the call stack of their
corresponding GoC'reate event.

GOAT constructs a goroutine tree (figure 3) of application-
level goroutines from the generated ECT. Nodes in the gor-
outine tree represent a goroutine, and directed edges denote
parent-child relationships in which the child is created from
a go statement that the parent executes. Each node of the
tree contains the entire sequence of events that the goroutine
executed, information about the goroutine’s creation site, the
resources it holds at each execution point, and the final
executed event right before the program termination. GOAT
analyzes this collection of information to check whether any
goroutine leaked after termination and whether the coverage
requirements are covered.

1) Deadlock Detection: When tracing is enabled, every
application goroutine invokes the tracer to capture GoEnd
before finishing its execution. Before the main function re-
turns, the main goroutine hands over the control to the root
goroutine to finalize the program termination. This context-
switch is done through invocation of runtime.Gosched ()
which emits the GoSched event. In GOAT, the main gorou-
tine’s final event in a successful execution is GoSched with
runtime.traceStop on top of its stack.

We call an execution successful, if below conditions hold:

1) all goroutines spawned in the main goroutine has GoEnd

as their final event,

2) the final event of the main goroutine is GoSched with

runtime.traceStop on top of its stack.

In the absence of any of these conditions, we conclude that
the program suffers from a “deadlock” bug because at least
one goroutine did not reach its final state. Therefore, GOAT
executes procedure 1 which is a BFS traversal on the goroutine

tree to check if the program suffers from partial or global
deadlocks.

DeadlockCheck (G):
if cur.lastEvent# GoSched then
return Global Deadlock
end
toVisit = [G.children]
for |toVisit| # 0 do
cur = toVisit[0]
if cur.lastEvent # GoEnd then
return Partial Deadlock (leak)
end
for n in cur.Children do
append n to toVisit
end
toVisit = toVisit[1 :]
end

return Pass
Procedure 1: DeadlockCheck procedure with root

node of goroutine tree (main goroutine) as input

When a deadlock is detected, GOAT generates visualiza-
tions such as executed interleaving (listing 1) and goroutine
tree (figure 3). The detailed report magnifies the scenario under
which the bug has occurred and displays the final concurrent
state of the program right before the failure. Samples of such
reports and visualizations are available in [44].

2) Coverage Measurement: Once the execution terminates,
GOAT checks whether the extracted coverage requirements are
covered. A mapping between ECT dynamic concurrent events
and statically obtained CU points is emitted by matching their
respective call-stack and CU source location. Through a BFS
traversal of the goroutine tree, we add a coverage vector to
each goroutine node from the emitted mapping. Each element
of the coverage vector is the respective covered value of the
coverage requirement for the current goroutine node. During
executions of tests ¢ € 7, we maintain and update a global
goroutine tree after each ¢ to measure the progress of coverage
percentage over tests in 7. However, equivalencing between
two goroutines and their respective coverage vectors from
different executions is non-trivial. We say two goroutines G,
and G, in the tests t; and t; are equivalent (i.e., falls into a
identical node in the global goroutine tree) if their parents are
equivalent and their creation source location (CU of kind go)
are identical.

parent(G,,) = parent(G,) A
Gm = Gn if{ CUG,)file = CUG)file A (1)
CU(G,,).line = CU(G,).line

IV. EVALUATION
A. Deadlock Detection

We assess the ability of GOAT and its variations in detecting
bugs with the minimum number of executions required to

EmPDL mGDL/TO Crash-Halt None

100%

75%
50%
0% I

Built-in LockDL goleak DO

=]

a

GOAT

Figure 4: Histogram of detected bugs by each tool performed
on 68 GoKer blocking bugs. PDL: partial deadlock, GDL/TO:
global deadlock, Crash/Halt: causes the program to crash or
halt during detection.

m(l] m[2-10) [10-100) [100-1000)

100%

75%

50%

25% I
0% I

Built-in LockDL goleak DO

GOAT

Figure 5: Percentage distribution for the average required
number of iterations (falling into each of the four given
intervals) by each tool to detect 68 GoKer blocking bugs.

expose the bug. We have compared GOAT against three
existing dynamic detectors:

o Built-in deadlock detector: It is an embedded mechanism
in the standard Go runtime. The mechanism periodically
makes sure that the queue of runnable goroutines is never
empty until the main goroutine terminates. If the queue
is empty and the main goroutine has not terminated yet
(i.e., main is blocked), it throws a runtime error.

e LockDL [45]: This tool intercepts with all mutex locks
and unlocks of the target application to maintain a “lock-
set” data structure. LockDL issues warning during runtime
when it finds a circular wait in the lock-set or double-
locking the same lock. It has a timeout mechanism for the
application that traps into global deadlocks (30 seconds).

e goleak [46]: This leak detector from Uber checks the pro-
gram stack at the end of the main goroutine’s execution
to find the application-level goroutines that remained in
the stack (i.e., leaked).

All experiments are performed on a server with Intel(R)
Xeon(R) CPU E7 processor (64 total cores with two threads
per core and eight cores per socket), 512 GB of RAM with
Ubuntu 5.4.0 and Go version 1.15.6. Table IV shows the details
of results obtained from 1000 executions of each tool per bug.

Table IV: Output of each tool on GoKer [9] blocking bugs. Detected bug (minimum # of executions required) — X (1000):
the tool is not able to detect any bug after 1000 executions. PDL: Partial Deadlock, GDL: Global Deadlock, PDL-k: Partial
Deadlock with k£ number of goroutines leaked. DL: A warning for potential deadlock is issued. TO/GDL: The global deadlock
is detected because none of goroutines made any progress after 30 seconds, CRASH: The execution paniced because of a flaw

in the execution (e.g., send on closed channel panic), HANG:

The tool halt for more than 10 minutes.

Bug Description Debugging Tools
GOAT
Cause SubCause Bug ID BUILTINDL ‘ GOLEAK ‘ LOCKDL 5O BI D2 D3 D3
cockroach_2448 X (1000) X (1000) X (1000) CRASH (1) CRASH (1) CRASH (1) CRASH (1) CRASH (1)
cockroach_24808 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach_25456 GDL (1) GDL(1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach_35073 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach_35931 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd_6857 X (1000) PDL (325) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (11) PDL-1 (3) PDL-1 (3)
grpe_1275 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
grpe_1424 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
Channel grpc_660 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
istio_17860 X (1000) PDL (1) X (1000) PDL-1 (2) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes_38669 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes_5316 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-2 (1) PDL-1 (1) PDL-2 (1) PDL-2 (1)
kubernetes_70277 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
Communication moby_21233 X (1000) PDL (1) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
Deadlock moby_33293 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (3) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby_4395 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
syncthing_5795 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
Channel & kubernetes_11298 X (1000) X (1000) TO/GDL (179) X (1000) TO/GDL (352) TO/GDL (158) TO/GDL (179) TO/GDL (179)
Conditional Variable moby_27782 X (1000) PDL (741) X (1000) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (4) PDL-2 (4)
cockroach_10790 X (1000) PDL (3) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
cockroach_13197 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach_13755 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
Channel & cockroach_I810T X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
Context grpc_862 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
istio_18454 X (1000) PDL (13) X (1000) PDL-2 (5) PDL-1 (14) PDL-1 (4) PDL-1 (6) PDL-1 (6)
Kubernetes_25331 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby_33781 X (1000) PDL (1) X (1000) PDL-1 (221) PDL-1 (10) PDL-1 (8) PDL-1 (10) PDL-1 (10)
Condition Variable moby_29733 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
moby_30408 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd_6873 X (1000) PDL (371) X (1000) PDL-2 (1) PDL-2 (2) PDL-2 (7) PDL-2 (6) PDL-2 (6)
etcd_7443 X (1000) X (1000) X (1000) X (1000) PDL-1 (9) PDL-1 (15) PDL-1 (14) PDL-1 (14)
etcd_7492 HANG (1) HANG (1) TO/GDL (4) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd_7902 X (1000) PDL (1) X (1000) PDL-4 (1) PDL-4 (1) PDL-4 (1) PDL-4 (1) PDL-4 (1)
grpe_I353 X (1000) PDL (1) X (1000) CRASH (1) CRASH (1) PDL-3 (1) PDL-3 (1) PDL-3 (1)
grpc_1460 X (1000) PDL (1) X (1000) PDL-2 (135) PDL-2 (1) PDL-2 (2) PDL-2 (1) PDL-2 (1)
Channel & Lock istio_16224 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
Mixed Kubernetes_10182 X (1000) PDL (44) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
Deadlock Kkubernetes_1321 X (1000) PDL (307) X (1000) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes_26980 GDL (375) GDL (131) X (1000) TO/GDL (191) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
kubernetes_6632 X (1000) X (1000) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (2) PDL-2 (1) PDL-2 (1)
moby_28462 X (1000) PDL (5) X (1000) PDL-2 (39) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
serving_2137 X (1000) X (1000) X (1000) X (1000) X (1000) TO/GDL (88) X (1000) X (1000)
Channel & cockroach_1055 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
WaitGroup cockroach_1462 X (1000) X (1000) TO/GDL (1) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
Misuse WaitGroup moby_25384 X (1000) PDL (T) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach_584 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach_9935 X (1000) PDL (1) DL (721) PDL-1 (1) PDL-1 (2) PDL-1 (1) PDL-1 (1) PDL-1 (1)
etcd_10492 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd_5509 X (1000) GDL (766) TO/GDL (426) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd_6708 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
Double Tockin grpe_3017 GDL (4) GDL (4) TO/GDL (3) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
s grpe_795 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
hugo_5379 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
moby_17176 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby_36114 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
Resource moby_7559 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
Deédlock syncthing_4829 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach_16167 X (1000) X (1000) DL (T) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (T) TO/GDL (1)
cockroach_3710 X (1000) X (1000) DL (123) PDL-2 (28) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
RWR deadlock cockroach_6181 X (1000) PDL (1) X (1000) PDL-4 (1) PDL-4 (1) PDL-3 (1) PDL-1 (1) PDL-1 (1)
hugo_325T GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
kubernetes_58107 X (1000) X (1000) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes_62464 X (1000) X (1000) DL (6) PDL-2 (161) PDL-2 (7) PDL-2 (2) PDL-2 (3) PDL-2 (3)
cockroach_10214 X (1000) X (1000) X (1000) PDL-2 (368) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
cockroach_7504 X (1000) X (1000) X (1000) PDL-2 (199) PDL-2 (1) PDL-2 (7) PDL-2 (1) PDL-2 (1)
AB-BA deadlock kubernetes_13135 X (1000) PDL (1) DL (4) PDL-2 (1) PDL-2 (5) PDL-2 (1) PDL-2 (22) PDL-2 (22)
Kkubernetes_30872 X (1000) PDL (338) X (1000) PDL-3 (50) PDL-3 (2) PDL-3 (1) PDL-3 (6) PDL-3 (6)
moby_4951 X (1000) PDL (120) X (1000) PDL-2 (15) PDL-2 (2) PDL-2 (2) PDL-2 (1) PDL-2 (1)
Total Bugs: 68 Total Detected: 19 56 26 60 67 68 67 67

Figure 4 and table IV show that variations of GOAT
outperforms other detector by discovering the bug in 100%
of the GoKer blocking benchmark. For example, the bug
kubernetes_6632 that is caused by misuse of channels
and locks, only detected by GOAT after a couple of executions,
while other tools were unable to detect it after 1000 executions.
Figure 5 and highlighted cells of table IV show that the idea
of injecting random delays around concurrency usage points
in the program drastically reduces the required number of

testing iterations until the bug occurs. DO means GOAT did
not delay the program at any point and D4 means that the
target program has been delayed up to four times around its
CU points. Figures 4 and 5 also state that the increase in
the delay bound of GOAT does not necessarily increase the
chance of exposing the bug. For example, the row of bug
serving_2137 in table IV show that only GOAT D2 were
able to detect the bug.

<d0 dl d2 d3 -ed4

o <0
ooolooo(‘

P Y S e
55% .O/{Y.

Coverage

1 5 10 15 20 25 30 35 40 45 50
Iterations

(a) etcd7443

55%

50% A58 eee
./0000—00—000—0—'&
/0

45%
prvary
0% /|

35%
[do d1 d2 d3 -ed4

Coverage

30% *

20%
1 5 10 15 20 25 30 35 38
Iterations

(b) kuberenetes11298

Figure 6: Coverage percentage after each iteration of GOAT with various D values for two representative bugs. Iterations on
the X axis of figures end when the respective bug is first detected. E.g., GOAT (D2) detects the bug in kuberenetes11298

after 38 executions at 52.23% coverage percentage.

B. Coverage Analyis

We picked two representative bug kernels etcd7443 and
kubernetes11298 to evaluate the coverage idea as they
both have extensive use of channels, mutexes, conditional
variables, nested selects within nested for loops, and the buggy
interleaving is proved to be rare to happen. Figures 6a and
6b show the gradual increase in coverage percentage during
testing iterations for different values of D. Recall that D is
the bound on the number of yields that we inject to the native
execution of a given program to perturb the scheduler around
concurrency usages. With the increase of D, the coverage
percentage increase rate also grows. With lower values of D,
the coverage percentages start at lower values and increase
more slowly over iterations. The reason is that the scheduler
does not get to explore different interleavings (thus different
coverage scenarios), and over iterations, the program executes
more deterministic regarding coverage requirements. However,
higher D does not necessarily increase the coverage (D2
and D4 in figure 6b). The gradual increase of the coverage
percentage and non-uniform increase rates for different values
of D reflects the effectiveness of our proposed coverage
metric. The drop in coverage for D1 in figure 6b is because
of the new coverage requirements (e.g., a new goroutine is
spawned and executing some concurrency primitives) that
were encountered during testing execution.

V. RELATED WORK

For correctness of CSP-based concurrent languages like Go,
Ng and Yoshida [10] proposed a static tool to detect global
deadlock in Go programs using choreography synthesis. Later,
Stadtmuller et al. [11] proposed a static trace-based global
detection approach based on forkable regular expressions.
Lange et al. proposed more static verification frameworks for
checking channel safety, and liveness [12], and behavioral
model checking [13]. Both methods approximate Go programs
with session types and behavioral contracts extracted from
their SSA intermediate representation. The mentioned work
has limitations for handling dynamic (e.g., in-loop) goroutine
or channel creation, and programs with many goroutines.

Besides, the rate of generated false positives is high. As
dynamic (runtime-level) analysis approaches, Zhao et al. [15]
introduced a heuristic-based runtime monitoring approach
for deadlock detection in Occam programs. Sulzmann and
Stadtmuller proposed a dynamic verification approach for
synchronous (unbuffered) channels [16], and a vector-clock-
based approach for asynchronous channels [17]. Although they
may support a larger subset of the Go language, they only
focus on channels as the root cause of deadlocks and evaluated
on relatively small examples. Also, they usually do not scale
for applications with thousands of goroutines and LOC [47].
Researchers have applied different systematic testing meth-
ods [22] to reduce the interleaving space to explore effectively
and efficiently. Delay-bounded [23], [24] and preemption-
bounded [25] techniques systematically “fuzz” the scheduler to
equally and fairly cover feasible interleaving. Other tools like
Maple [26], CalFuzzer [27], and ConTest [29] actively control
the scheduler to maximise a pre-defined concurrency coverage
criterion [30] or the probability of bug exposure [24].

VI. SUMMARY & FUTURE WORK

We presented GOAT, a testing framework for concurrent
Go applications to assist concurrency debugging of real-world
applications. GOAT combines static and dynamic methods to
model and explores application execution. GOAT detects all
68 blocking bugs of GoKer benchmark, which are the bug
kernels of the top nine open-source projects written in Go. The
scheduler behavior is perturbed with automatically injected
random delays to accelerate the bug exposure. By dynamic
measurement of a set of coverage requirements, we quantify
the quality of schedule-space exploration of GOAT. Proposed
coverage requirements accurately reflect the dynamic behavior
of program executions and testing iterations.

The engineering of GOAT is flexible and extensible to
more advanced components. For example, the current minimal
GOAT engine can be extended to take full control over the Go
scheduler and “guide” testing towards untested interleaving.
We are dockerizing GOAT for easy and public use, making it
practical for production testing.

[1]
[2]

[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

“Effective Go.” [Online]. Available: https:/golang.org/doc/effective_
go.html

C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, p. 666677, Aug. 1978. [Online]. Available:
https://doi.org/10.1145/359576.359585

D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
“Kubernetes Reference.” [Online]. Available: https://kubernetes.io/docs/
reference/

“Etcd: A distributed, reliable key-value store for the most critical data of
a distributed system.” [Online]. Available: https://github.com/coreos/etcd
R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade,
B. Darnell, B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis, “Cockroachdb:
The resilient geo-distributed sql database,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD °20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1493-1509. [Online]. Available:
https://doi.org/10.1145/3318464.3386134

“A high performance, open source, general RPC framework that puts
mobile and HTTP/2 first.”” [Online]. Available: https://github.com/grpc/
grpe-go

T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world
concurrency bugs in go,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 865-878.
[Online]. Available: https://doi.org/10.1145/3297858.3304069

T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, “Gobench: A
benchmark suite of real-world go concurrency bugs,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2021, pp. 187-199.

N. Ng and N. Yoshida, “Static deadlock detection for concurrent
go by global session graph synthesis,” in Proceedings of the 25th
International Conference on Compiler Construction, ser. CC 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
174-184. [Online]. Available: https://doi.org/10.1145/2892208.2892232
K. Stadtmiiller, M. Sulzmann, and P. Thiemann, ‘“Static trace-based
deadlock analysis for synchronous mini-go,” in Programming Languages
and Systems, A. Igarashi, Ed. Cham: Springer International Publishing,
2016, pp. 116-136.

J. Lange, N. Ng, B. Toninho, and N. Yoshida, “Fencing off go:
Liveness and safety for channel-based programming,” in Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 748-761. [Online]. Available:
https://doi.org/10.1145/3009837.3009847

J. Lange, N. Ng, B. Toninho, and N. Yoshida, “A static verification
framework for message passing in go using behavioural types,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1137-1148. [Online]. Available:
https://doi.org/10.1145/3180155.3180157

D. Vyukov and A. Gerrand, “Introducing the go race detector,” 2013.
[Online]. Available: https://blog.golang.org/race-detector

J. Zhao, H. Abe, Y. Nomura, J. Cheng, and K. Ushijima, “Runtime
detection of communication deadlocks in occam 2 programs,” pp. 97—
107, 1997.

M. Sulzmann and K. Stadtmiiller, “Trace-based run-time analysis of
message-passing go programs,” CoRR, vol. abs/1709.01588, 2017.
[Online]. Available: http://arxiv.org/abs/1709.01588

M. Sulzmann and K. Stadtmiiller, “Two-phase dynamic analysis of
message-passing go programs based on vector clocks,” ser. PPDP *18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3236950.3236959

N. Dilley and J. Lange, “Bounded verification of message-passing
concurrency in go using promela and spin,” Electronic Proceedings in
Theoretical Computer Science, vol. 314, p. 34—45, Apr 2020. [Online].
Available: http://dx.doi.org/10.4204/EPTCS.314.4

V. Arora, R. K. Bhatia, and M. Singh, “A systematic review of
approaches for testing concurrent programs,” Concurr. Comput. Pract.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

Exp., vol. 28, no. 5, pp. 1572-1611, 2016.
https://doi.org/10.1002/cpe.3711

S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan, “Difftrace:
Efficient whole-program trace analysis and diffing for debugging,” in
2019 IEEE International Conference on Cluster Computing (CLUSTER),
2019, pp. 1-12.

C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL °05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 110-121. [Online]. Available: https://doi.org/10.
1145/1040305.1040315

P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing
using schedule bounding: An empirical study,” in Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 15-28. [Online].
Available: https://doi.org/10.1145/2555243.2555260

M. Emmi, S. Qadeer, and Z. Rakamari¢, “Delay-bounded scheduling,”
in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL "11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 411-422.
[Online]. Available: https://doi.org/10.1145/1926385.1926432

S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte,
“A randomized scheduler with probabilistic guarantees of finding
bugs,” in Proceedings of the Fifteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XV. New York, NY, USA: Association
for Computing Machinery, 2010, p. 167-178. [Online]. Available:
https://doi.org/10.1145/1736020.1736040

M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 446-455. [Online]. Available:
https://doi.org/10.1145/1250734.1250785

J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-
driven testing tool for multithreaded programs,” ser. OOPSLA ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
485-502. [Online]. Available: https://doi.org/10.1145/2384616.2384651
P. Joshi, M. Naik, C.-S. Park, and K. Sen, “Calfuzzer: An extensible
active testing framework for concurrent programs,” in Computer Aided
Verification, A. Bouajjani and O. Maler, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 675-681.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multithreaded
java program test generation,” in Proceedings of the 2001 Joint
ACM-ISCOPE Conference on Java Grande, ser. JGI '01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 181.
[Online]. Available: https://doi.org/10.1145/376656.376848

O. Edelstein, E. Farchi, E. Goldin, Y. Nir-Buchbinder, G. Ratsaby, and
S. Ur, “Framework for testing multithreaded java programs,” Concur-
rency and Computation: Practice and Experience, vol. 15, 2003.

S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing
concurrent programs to achieve high synchronization coverage,” in
Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ser. ISSTA 2012. New York, NY, USA: Association
for Computing Machinery, 2012, p. 210-220. [Online]. Available:
https://doi.org/10.1145/2338965.2336779

M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for
detecting concurrency errors in erlang programs,” in 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation,
2013, pp. 154-163.

X. Yuan and J. Yang, “Effective concurrency testing for distributed
systems,” ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1141-1156. [Online]. Available:
https://doi.org/10.1145/3373376.3378484

E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur,
and E. Farchi, “Forcing small models of conditions on program
interleaving for detection of concurrent bugs,” in Proceedings of
the 7th Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, ser. PADTAD ’09. New York, NY, USA:
Association for Computing Machinery, 2009. [Online]. Available:
https://doi.org/10.1145/1639622.1639629

[Online]. Available:

[34]

[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]

[43]
[44]

[45]

[46]
[47]

J. Yu and S. Narayanasamy, “A case for an interleaving constrained
shared-memory multi-processor,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
325-336. [Online]. Available: https://doi.org/10.1145/1555754.1555796
“The go memory model,” 2014. [Online]. Available: https:/golang.org/
ref/mem

“Go developer survey 2019 results” [Online]. Available: https:
//blog.golang.org/survey2019-results

[Online]. Available: https://github.com/moby/moby/issues/28405

A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, “Applications of
synchronization coverage,” in Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 206-212. [Online]. Available: https://doi.org/10.
1145/1065944.1065972

Golang, “Command trace.” [Online]. Available: https://golang.org/cmd/
trace/

Golang, “Package ast.”” [Online]. Available: https://golang.org/pkg/go/
ast/

Golang, “Package trace.” [Online]. Available: https://golang.org/pkg/
runtime/trace/

S. M. Russ Cox, “Profiling go programs,” 2013. [Online]. Available:
https://blog.golang.org/pprof

[Online]. Available: https://golang.org/src/internal/trace/parser.go
GOAT, “Supporting material for iiswc submission.” [Online]. Available:
https://anonymous.4open.science/r/iiswc_goat_visualizations

“Online deadlock detection in go (golang).” [Online]. Available:
https://github.com/sasha-s/go-deadlock

“Uber goleak.” [Online]. Available: https://github.com/uber-go/goleak
N. Dilley and J. Lange, “An empirical study of messaging passing
concurrency in go projects,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019, pp.
377-387.

