
ANALYSIS AND DEBUGGING TOOLS FOR

CONCURRENT PROGRAMS

by

Saeed Taheri

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computing

The University of Utah

July 2021

Copyright © Saeed Taheri 2021

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Saeed Taheri

has been approved by the following supervisory committee members:

Ganesh Gopalakrishnan , Chair(s)
Date Approved

Zvonimir Rakamaric , Member
Date Approved

Hari Sundar , Member
Date Approved

Alexander Lex , Member
Date Approved

Martin Burtscher , Member
Date Approved

by Mary Hall , Chair/Dean of

the Department/College/School of Computer Science

and by David B. Keida , Dean of The Graduate School.

ABSTRACT

With the high growth in computation power and the invention of modern languages,

concurrent software testing and debugging is vital to deliver reliable software. Finding

bugs in concurrent/parallel software is notoriously challenging because 1) the interleav-

ing space grows exponentially with the number of processing units (e.g., CPU cores), 2)

the non-deterministic nature of concurrent software makes concurrent bugs difficult to

reproduce, and 3) root-causing misbehaved executions of a concurrent program is non-

trivial due to the complex interactions between concurrent components of the program.

In this work, we have designed and implemented several frameworks and toolchains to

overcome large-scale and real-world concurrent/parallel software debugging challenges.

Our methods aim to facilitate the concurrent debugging process by providing efficient data

collection and effective information retrieval mechanisms to target real-world software

and bugs. First, we introduce PARLOT, a whole-program call tracing framework for HPC

applications (MPI+X) that highly compresses the traces (up to more than 21000 times)

while adding minimal overhead with an average required bandwidth of just 56 kB/s per

core. Second, we present DiffTrace, a series of automated data abstraction, representation,

and visualization techniques that differentiate the collected PARLOT traces and narrows

the search space down to just a few candidates of buggy traces. Finally, we illustrate

GOAT, an end-to-end framework for automated tracing, analysis, and testing of concur-

rent Go applications. We also propose a set of coverage metrics to measure the quality

of schedule exploration in CSP-like concurrent languages. Our evaluation of GOAT on a

recent Go concurrency bug benchmark of real-world programs shows a 100% success rate

in detecting blocking bugs.

To the hero innocent Navid Afkari, the victims of all peaceful protests in Iran, including

protests in June 2009 (Khordad 88), January 2018 (Dey 96) and November 2019 (Aban 98),

and 176 innocent victims of flight PS752.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Concurrent Software Correctness . 1
1.1.1 Background . 2

1.1.1.1 Blocking Bugs . 2
1.1.1.2 Non-Blocking Bugs . 3
1.1.1.3 Concurrent Debugging . 3

1.2 Dissertation Statement . 4
1.3 Contributions of the Dissertation . 4
1.4 Organization of the Dissertation . 5

2. WHOLE-PROGRAM DYAMIC TRACING . 7

2.1 Introduction . 7
2.2 Background and Related Work . 10

2.2.1 Binary Instrumentation . 11
2.2.2 Efficient Tracing . 12

2.3 Design of PARLOT . 13
2.3.1 Tracing Operation . 13
2.3.2 Incremental Compression . 14
2.3.3 Compression Algorithm . 15
2.3.4 PIN and Call-Stack Correction . 16

2.4 Evaluation Methodology . 17
2.4.1 Benchmarks and System . 17
2.4.2 Metrics . 18
2.4.3 Tracing Tools . 18

2.5 Results . 21
2.5.1 Tracing Overhead . 21
2.5.2 Required Bandwidth . 24
2.5.3 Compression Ratio . 25
2.5.4 Overheads . 27
2.5.5 Compression Impact . 29

2.6 Discussion and Conclusion . 30

3. WHOLE-PROGRAM TRACE ANALYSIS . 32

3.1 Introduction . 32
3.1.1 Problem 1 – Collecting Whole-Program Heterogeneous Function-Call

Traces Efficiently . 34
3.1.2 Problem 2 – Need to Generalize Techniques for Outlier Detection 34
3.1.3 Problem 3 – Loop Summarization . 35

3.2 DiffTrace Overview . 36
3.2.1 High-level Overview . 36
3.2.2 Example Walk-through . 38
3.2.3 Pre-processing . 39
3.2.4 Nested Loop Representation . 39
3.2.5 Hierarchical Clustering via FCA . 40
3.2.6 Detecting Suspicious Traces via JSMD . 42
3.2.7 Evaluation . 43

3.2.7.1 diffNLR . 43
3.3 Algorithms Underlying DiffTrace . 45

3.3.1 Nested Loop Recognition (NLR) . 45
3.3.2 Concept Lattice Construction . 46
3.3.3 Hierarchical Clustering, Construction, and Comparison 46

3.3.3.1 Ranking Table . 47
3.4 Case Study: ILCS . 47

3.4.1 ILCS-TSP Workflow . 48
3.4.2 OpenMP Bug: Unprotected Memory Access . 49
3.4.3 MPI Bug: Deadlock Caused by Fault in Collective 49
3.4.4 MPI Bug: Wrong Collective Operation . 50

3.5 LULESH2 Examples . 50
3.6 Related Work . 51
3.7 Discussions & Future Work . 52

4. AUTOMATED CONCURRENCY TESTING FRAMEWORK FOR GO 56

4.1 Introduction . 56
4.2 Background . 60

4.2.1 Go Concurrency . 60
4.2.2 Concurrency Bugs in Go . 62
4.2.3 Accelerating Bug Exposure . 63
4.2.4 Testing Coverage Analysis . 64

4.3 Design and Implementation . 66
4.3.1 Overview . 66
4.3.2 Static Analysis . 67

4.3.2.1 Concurrency Usage Model . 67
4.3.2.2 Source Instrumentation . 68

4.3.3 Coverage Requirements . 68
4.3.4 Dynamic Concurrency Tracing . 70
4.3.5 Offline Analysis . 71

4.3.5.1 Deadlock Detection . 71
4.3.5.2 Coverage Measurement . 74

4.4 Evaluation . 74

vi

4.4.1 Deadlock Detection . 74
4.4.2 Coverage Analyis . 77

4.5 Related Work . 79
4.5.1 Go Correctness . 79
4.5.2 Systematic Testing . 80

4.6 Summary & Future Work . 81

5. CONCLUSION AND FUTURE WORK . 82

5.1 Future Work . 83
5.1.1 PARLOT . 83
5.1.2 DiffTrace . 83
5.1.3 GOAT . 84
5.1.4 Dynamic Analysis Tools . 84

REFERENCES . 86

vii

LIST OF FIGURES

1.1 Taxanomy of concurrent bugs . 3

1.2 Taxanomy of concurrent debugging approaches. The highlighted area shows
the techniques that we employed in this disseration. 4

2.1 Overview of PARLOT . 14

2.2 Average tracing overhead on the NPB applications - Input B 20

2.3 Average tracing overhead on the NPB applications - Input C 20

2.4 Average required bandwidth per core (kB/s) on the NPB applications - Input B 21

2.5 Average required bandwidth per core (kB/s) on the NPB applications - Input C 23

2.6 Average compression ratio of PARLOT on the NPB applications - Input B 24

2.7 Average compression ratio of PARLOT on the NPB applications - Input C 25

2.8 Tracing overhead breakdown - Input B . 25

2.9 Tracing overhead breakdown - Input C . 26

2.10 Variability of PARLOT(M) overhead on 16 nodes - Input B 26

2.11 PARLOT-NC tracing overhead breakdown - Input B . 27

2.12 PARLOT-NC tracing overhead breakdown - Input C . 29

3.1 DiffTrace Overview . 36

3.2 Simplified MPI implementation of Odd/Even Sort . 38

3.3 Sample Concept Lattice from Object-Attribute Context in Table 3.4 41

3.4 Pairwise Jaccard Similarity Matrix (JSM) of MPI Processes in Sample Code . . . 41

3.5 Legend . 42

3.6 swapBug . 42

3.7 dlBug . 42

3.8 Three diffNLR outputs . 47

4.1 GOAT Overview . 57

4.2 Distribution of number of trials for GOAT (D0) to detect 68 blocking bugs in
GoKer [114] . 65

4.3 Goroutine tree of the leak situation in listing 1 . 65

4.4 Goroutine tree of the leak situation in listing 1 . 75

4.5 Histogram of detected bugs by each tool performed on 68 GoKer blocking
bugs. PDL: partial deadlock, GDL/TO: global deadlock, Crash/Halt: causes
the program to crash or halt during detection. 75

4.6 Percentage distribution for the average required number of iterations (falling
into each of the four given intervals) by each tool to detect 68 GoKer blocking
bugs. 78

4.7 Coverage percentage after each iteration of GOAT with various D values for
etcd7443. Iterations on the X axis of figures end when the respective bug is
first detected. 78

4.8 Coverage percentage after each iteration of GOAT with various D values for
kuberenetes11298. Iterations on the X axis of figures end when the respec-
tive bug is first detected. E.g., GOAT (D2) detects the bug in kuberenetes11298

after 38 executions at 52.23% coverage percentage. 79

ix

LIST OF TABLES

2.1 Overhead added by each tool . 19

2.2 Required bandwidth per core (kB/s) . 22

2.3 Compression ratio . 28

2.4 Tracing overhead of versions of PARLOT(M)- Input B - Pin: PIN-INIT, P:
PARLOT, Pnc: PARLOT-NC . 28

2.5 Tracing overhead of versions of Pa - Input B - Pin: PIN-INIT, P: PARLOT, Pnc:
PARLOT-NC . 28

3.1 Pre-defined Filters . 39

3.2 The generated traces for odd/even execution with four processes 40

3.3 NLR of Traces . 54

3.4 Formal Context of odd/even sort example . 54

3.5 Ranking table - OpenMP bug: unprotected shared memory access by thread
4 of process 6 . 54

3.6 Ranking table - MPI bug: wrong collective size in process 2 54

3.7 Ranking Table - MPI-Bug: Wrong Collective Operation ,Injected to Process 0 . . 55

3.8 Attributes mined from traces . 55

3.9 Ranking Table for LULESH . 55

4.1 Coverge requirements defined for concurrent Go . 72

4.2 Event categories by the Go execution tracer . 72

4.3 Concurrency Usages and coverage requirements of program in listing1 72

4.4 Output of each tool on GoKer [114] blocking bugs. Detected bug (minimum
of executions required) – X (1000): the tool is not able to detect any bug
after 1000 executions. PDL: Partial Deadlock, GDL: Global Deadlock, PDL-
k: Partial Deadlock with k number of goroutines leaked. DL: A warning
for potential deadlock is issued. TO/GDL: The global deadlock is detected
because none of goroutines made any progress after 30 seconds, CRASH:
The execution paniced because of a flaw in the execution (e.g., send on closed
channel panic), HANG: The tool halt for more than 10 minutes. 76

ACKNOWLEDGEMENTS

My Ph.D. era has ended, and I cannot be more grateful for all the lessons that I have

learned. It was a tough 6 years with challenges and many ups and downs. After all I

have been through, deprived of studying in my home country, starting a new life abroad,

and thriving during my Ph.D., it feels great and rewarding. Hereby, I would like to

acknowledge those people who have been part of this journey and have helped me in

many ways during my 6 years at the University of Utah.

First of all, I would like to thank my advisor, Dr. Ganesh Gopalakrishnan, who taught

me to work hard, generate ideas and accomplish the work. This dissertation would not be

possible without his expertise, guidance, and support. I have learned a ton of technical and

life lessons from him. Second, I would like to thank my external committee member who

served as my M.S. advisor at Texas State University, Dr. Martin Burtscher. He taught me

how to research computer science and encouraged me to pursue my Ph.D. Dr. Burtscher

also supported me with his valuable feedback during my Ph.D. years. Third, I want to

thank my committee members, Dr. Rakamaric, Dr. Sundar, and Dr. Lex, for their support

and significant feedbacks during the completion of this dissertation.

My father, Gholamhossein Taheri, passed away in January 2014. His sudden loss im-

pacted our family badly. However, we stick together, supported each other, and survived

the tough days without him. Now here I am, defended my Ph.D., my mother thrived

nicely expanding my father’s business and kept the job for many of her workers. And my

sisters, Farnaz and Tannaz, are pursuing their higher degrees in the U.S. and Canada. I

wish my dad could see us flourishing. He would be so much happy and proud. I would

like to thank him for all the love and support he had for me. I want to thank my mother,

Afsar Amiri, who sacrificed her life for her kids and supported us however she could. I

would not be here if it were not because of her love, support, and kindness.

During my Ph.D., I was fortunate as I met the love of my life, Zahra. Being around her

and feeling her love and support, especially when I was frustrated and disappointed, was

the best gift that anybody could have asked for. I want to appreciate her a lot and wish her

all the best as she is also working on her Ph.D. in Mechanical Engineering at the University

of Utah at the moment.

I also want to acknowledge all the teachers, professors, and advisors who taught me the

science of nature and the skills to engineer new creatures. I appreciate my teachers in Alavi

elementary school, Taha junior high school, Andishe high school, professors, and advisors

in the Computer Science and Engineering Department at the Shiraz University, Texas State

University, and the University of Utah. Finally, I would like to thank all my friends and

colleagues. My childhood friends in my hometown Shiraz, my friends in San Marcos,

Texas, and my new friends in Salt Lake City, Utah. I also want to thank my colleagues

in the Efficient Computing Laboratory (ECL) at Texas State University and the Center of

Parallel Computing (CPU) at the University of Utah.

xii

CHAPTER 1

INTRODUCTION

1.1 Concurrent Software Correctness
In the life-cycle of computer programs, software testing and debugging play essential

roles. Many approaches have been developed to test and debug software at different layers

and from various aspects. Traditional and basic debugging techniques such as “printf”

debugging, interactive debugging [4, 35], memory dumps, and profiling have been used

widely in software development. However, modern concurrent system architectures and

programming languages require novel software debugging techniques [34]. With the high

growth in computation power and modern languages, programs are getting more sophis-

ticated, complex, large, and heterogeneous to exploit the processing power efficiently (e.g.,

distributed memory and shared memory systems in Cloud and High-Performance Com-

puting - HPC). Locating bugs in such programs is notoriously challenging because 1) the

interleaving space grows exponentially with the number of processing units, 2) concurrent

bugs are difficult to reproduce due to the non-deterministic nature of concurrent software,

and 3) root-causing misbehaved executions of a concurrent program are non-trivial due

to the complex interactions between concurrent program components. Researchers have

developed techniques and tools to detect, prevent, and fix concurrent bugs in different

levels of abstraction from multiple perspectives. Depending on the characteristics of target

bugs [69], there are some advantages and limitations to each approach. Static analyzers

(i.e., methods that analyze software without actually executing the program) offer rigorous

guarantees, but they are often not practical for large-scale real-world programs. While

dynamic analyzers (i.e., methods that analyze software based on execution evidence) cover

a broader class of programs, they incur overhead to the program execution and may

miss uncommon bugs. Hybrid analyzers (e.g., testing coverage analysis) combine ideas

2

from both techniques to deliver reliable and practical debuggers. This dissertation has

combined ideas from the broad spectrum of concurrency debugging approaches and im-

plemented several frameworks and toolchains to assist parallel software developers in

locating flaws in the program by automated and efficient data collection and analysis.

1.1.1 Background

Debugging concurrent programs require insight into the behavior of target bugs. A

bug’s behavior is described by its cause and its symptom during execution. Adopting form

the taxanomy proposed for concurrent Go bugs [106], we generally categorize common

concurrency bugs in both shared and distributed memory systems based on the symptom

of the bug (figure 1.1). This work aims not to focus on a specific bug class but rather to

provide general tools to analyze the symptoms of unexpected behaviors in HPC and Cloud

systems (i.e., shared memory and distributed memory systems) to help locate their cause.

1.1.1.1 Blocking Bugs

Blocking bugs lead the execution of the program into a halt state and prevent the

program from making progress and reaching its final state.

• Deadlock is a situation where one or more processes in a system cannot proceed

because they are blocked waiting for a shared resource held by another process.

More generally, deadlock occurs when a process is waiting for an external signal

from another process which is also attempting to acquire a resource held by other

processes.

• Livelock is a condition where a thread is waiting for a resource that will never be-

come available. It is similar to deadlock except that the state of the process involved

in the livelock constantly changes regarding each other, non progressing.

• Starvation occurs in systems with different priorities for the execution of processes

when one or more processes are constantly delayed indefinitely due to the higher

priority processes receiving the required resources.

3

Concurrent Bugs

Blocking Non-Blocking

Deadlock LivelockStarvation Data Race Atomicity
Violation

Order
Violation

Figure 1.1: Taxanomy of concurrent bugs

1.1.1.2 Non-Blocking Bugs

Non-blocking bugs cause the program to produce incorrect results. The program ex-

ecution terminates, but the generated output is invalidated because of the lack of proper

serilaization for concurrent memory accesses.

• Order violation is the violation of the expected order of at least two memory accesses

which produce corrupted results.

• Atomicity violation refers to the situation when two blocks of code (i.e., finite se-

quences of statements) execute concurrently and produce inconsistent results de-

pending on the non-deterministic order of executions.

• Data race occurs when at least two concurrent threads access the same memory

location, and at least one of the accesses is write.

1.1.1.3 Concurrent Debugging

Figure 1.2 displays the general taxonomy of methods for tackling concurrency debug-

ging challenges. Testing exercises the program behavior over a set of inputs (manually

written tests) or over the schedule space (feasible interleavings) to detect errors. Although

testing effectively reveals flaws of the program, it does not guarantee the program’s bug

freedom. Model checking exhaustively test the program to cover possible control flow

paths and verify the program properties. However, due to scalability problems, model

checking is typically done symbolically and up to a certain bound; thus, they rarely achieve

a guarantee. Tracing collects evidence from program execution, enabling offline analysis

of the program’s dynamic behavior. Similar to tracing, Record and Replay technique cap-

tures a single execution of the target program for later replay and analysis of the program’s

4

Concurrency Debugging

Testing VisualizationRecord & ReplayTracingModel Checking Theorem Proving

Figure 1.2: Taxanomy of concurrent debugging approaches. The highlighted area shows
the techniques that we employed in this disseration.

non-deterministic behavior. Both methods usually incur overhead to the native execution

of the program and require sophisticated mechanisms to make them practical for real-

world programs and large-scale executions. Theorem Proving techniques, in principle,

prove a system to be free of flaws often through verifying type systems. The enormous

effort needed to use these tools makes them most appropriate for new implementations

of small, critical cores. Visualization techniques provide transparent representations of

complex concurrent execution of the program for developers to analyze visually.

In this dissertation, we combine and apply methods from tracing (chapters 2 and 4),

record and replay (chapters 2,3 and 4), testing (chapter 4), and visualization (chapters 3 and 4)

to facilitate the process of concurrent debugging.

1.2 Dissertation Statement
This dissertation aims to facilitate the concurrent debugging process by providing ef-

ficient data collection and effective information retrieval mechanisms to target real-world

software and bugs. With that being said, our thesis statement is the following:

Efficiently collecting data and systematically analyzing them is essential to
gaining insight into the behavior of complex programs and help developers
fix the flaws of the program. Also, given the rich set of concurrency primitives
in modern languages, one needs to articulate nuanced concurrency coverage
metrics and demonstrate their attainment.

1.3 Contributions of the Dissertation
In this dissertation, we present different contributions to facilitate concurrent debug-

ging using efficient tools and automated frameworks.

First, we introduce PARLOT (Chapter 2), a new tracing approach that makes it possible

5

to capture the whole-program call-return, call-stack, call-graph, and call-frequency infor-

mation, including all library calls, for every thread and process of HPC applications at

low overhead in both space and time. PARLOT is equipped with a new incremental data

compression algorithm to drastically reduce the required tracing bandwidth (average of

56 kB/s per core), thus enabling the collection of whole-program traces, which would be

infeasible without on-the-fly compression. PARLOT can instrument x86 applications at the

binary level (regardless of the source language used) to collect whole-program call traces

with the compression ratio of up to 21,000.

Second, we present DiffTrace (Chapter 3), a series of automated data abstraction, repre-

sentation, and visualization techniques that differentiate the collected PARLOT traces and

narrows the search space down to just a few candidates of buggy traces. In DiffTrace, we

employ concept lattices to amalgamate the collected traces and hierarchically cluster them

based on features extracted from the structure of traces. DiffTrace also utilizes the rigorous

notion of Nested Loop Representations (NLRs) for summarizing traces and representing

loops in a manner that informs the developer engaged in debugging. We evaluate the

effectivness of DiffTrace by locating artificial bugs injected to ILCS [12], a hybrid (MPI +

OpenMP) HPC framework.

Third, we illustrate GOAT (Chapter 4), a testing and analysis framework for concurrent

Go applications that provides for whole-program trace collection (via an enhancement

to the standard tracer package) and knowledge discovery about the program’s dynamic

behavior. We show the effectiveness of controlled preemptions for concurrency bug expo-

sure in the context of a real-world language. We demonstrate the effectivness of GOAT

by detecting all 68 GoKer [114] blocking bugs, many of which are undetected by existing

tools. Lastly, we propose a set of coverage requirements to measure testing quality in CSP-

like concurrent languages. The proposed metrics characterize the dynamic behavior of

concurrency primitives, enabling measurement of quality and progress of schedule-space

exploration.

1.4 Organization of the Dissertation
This dissertation is organized as follows: In Chapter 2, we present the design and

evaluation of PARLOT, the whole-program tracing mechanism; Chapter 3 illustrates the

6

series of trace abstractions and representations towards locating the flaw by clustering and

diffing traces; with Chapter 4, we describe the end-to-end analysis and testing framework

for concurrent Go applications called GOAT, and propose a set of concurrency coverage

metrics to measure the quality of schedule space exploration; finally, in Chapter 5, we

summarize all the contributions and conclude the dissertation.

CHAPTER 2

WHOLE-PROGRAM DYAMIC TRACING

This chapter is based on the work published at the Workshop on Programming and

Performance Visualization Tools (ESPT) 2018 [100]1. We present PARLOT, a framework

for efficient whole-program call tracing for HPC (MPI+X) applications using Intel Pin [70]

dynamic binary isntrumentation that includes following key features: (1) It describes a

technique that makes low-overhead on-the-fly compression of whole-program call traces

feasible. (2) It presents a new, efficient, incremental trace-compression approach that re-

duces the trace volume dynamically, which lowers not only the needed bandwidth but

also the tracing overhead. (3) It collects all caller/callee relations, call frequencies, call

stacks, as well as the full trace of all calls and returns executed by each thread, including

in library code. (4) It works on top of existing dynamic binary instrumentation tools, thus

requiring neither source-code modifications nor recompilation. (5) It supports program

analysis and debugging at the thread, thread-group, and program level. PARLOT estab-

lishes that comparable capabilities are currently unavailable. Our experiments with the

NAS parallel benchmarks running on the Comet supercomputer with up to 1,024 cores

show that ParLoT can collect whole-program function-call traces at an average tracing

bandwidth of just 56 kB/s per core.

2.1 Introduction
Understanding and debugging HPC programs is time-consuming for the user and

computationally inefficient. This is especially true when one has to track control flow in

terms of function calls and returns that may span library and system codes. Traditional

1©2019 Springer. Adapted, with permission, from Taheri S., Devale S., Gopalakrishnan G., Burtscher
M. (2019) ParLoT: Efficient Whole-Program Call Tracing for HPC Applications. In: Bhatele A., Boehme
D., Levine J., Malony A., Schulz M. (eds) Programming and Performance Visualization Tools. ESPT
2017, ESPT 2018, VPA 2017, VPA 2018. Lecture Notes in Computer Science, vol 11027. Springer, Cham.
https://doi.org/10.1007/978-3-030-17872-7 10

8

software engineering quality assurance methods are often inapplicable to HPC where

concurrency combined with large problem scales and sophisticated domain-specific math

can make programming very challenging. For example, it took months for scientists to

debug an MPI laser-plasma interaction code [34].

HPC bugs may be a combination of both flawed program logic and unspecified or

illegal interactions between various concurrency models (e.g., PThreads, MPI, OpenMP,

etc.) that coexist in most large applications [34]. Moreover, HPC software tends to consume

vast amounts of CPU time and hardware resources. Reproducing bugs by rerunning the

application is therefore expensive and undesirable. A natural and field-proven approach

for debugging is to capture detailed execution traces and compare the traces against corre-

sponding traces from previous (stable) runs [3,18]. A key requirement is to do this collection

as efficiently as possible and in as general and comprehensive a manner as possible.

Existing tools in this space do not meet our criteria for efficiency and generality. The

highly acclaimed STAT [3] tool has helped isolate bugs based on building equivalence

classes of MPI processes and spotting outliers. We would like to go beyond the capabil-

ities offered by STAT and support the collection of whole-program traces that can then be

employed by a gamut of back-end tools. Also, STAT is usually brought into the picture

when a failure (e.g., a deadlock or hang) is encountered. We would like to move toward an

“always on” collection regime, as we cannot anticipate when a failure will occur – or, more

importantly, whether the failure will be reproducible. There are no reported debugging studies

on using STAT in continuous collection (“always on”) mode. In CSTG [18], the collection is

orchestrated by the user around chosen collection points and employs heavy-weight unix

backtrace calls. These again are different from PARLOT, where collection points would

not be a priori chosen.

The thrust of the work in this paper is to avoid many of the drawbacks of existing

tracing-based tools. We are interested in avoiding source-code modifications and recom-

pilation — thus making binary instrumentation-based tools the only practical and widely

deployable option. We also believe in the value of creating tools that are portable across a

wide variety of platforms.

Our goal is to use compression for trace aggregation and to offer a generic and low-

overhead tracing method that (1) collects dynamic call information during execution (all

9

function calls and returns) for debugging, performance evaluation, phase detection [85],

etc., (2) has low overhead, (3) and requires little tracing bandwidth. Providing all these

features in a single tool that operates based on binary instrumentation is an unsolved problem. In

this paper, we describe a new tracing approach that fulfills these requirements, which we

implemented in our proof-of-concept PARLOT tool.

With PARLOT, users can easily build a host of post-processors to examine executions

from many vantage points. For instance, they can write post-processors to detect un-

expected (or “outlier”) executions. If needed, they can drill down and detect abnormal

behaviors even in the runtime and support library stack such as MPI-level activities. In HPC,

it is well-known (especially on newer machines) that bugs are often due to broken libraries

(MPI, OpenMP), a broken runtime, or OS-level activities. Having a single low-overhead

tool that can “X-ray” an application to this depth is a goal met by PARLOT— a unique

feature in today’s tool eco-system.

To further motivate the need for whole-program function call traces, consider the ex-

pression f()+g(). In C, there is no sequence point associated with the + operator [81]. If

these function calls have inadvertent side-effects causing failure, it is important to know in

which order f() and g() were invoked—something that is easy to discern using PARLOT’s

traces. One may be concerned that such a tool introduces excessive execution slowdown.

PARLOT goes to great lengths to minimize these overheads to a level that we believe most

users will find acceptable. The mindset is to “pay a little upfront to dramatically reduce the

number of overall debug iterations”.

As proof of concept, we gathered preliminary results from using the PARLOT tracing

mechanism to compare different runs. We injected various bugs into the MPI-related

functions of ILCS [12], a parallelization framework for iterative local searches. We ran

PARLOT on top of executions of buggy and bug-free versions of ILCS and collected traces.

Since PARLOT’s traces maintain the order of the function calls, we were able to split the

traces at multiple points of interest and to feed different chunks of traces to a Concept

Lattice data structure [28] [32]. Having the totally ordered sequence of function calls of

the whole program for each active process/thread enabled us to quickly narrow down the

search space to locate the cause of the abnormal behavior in the buggy version of ILCS.

This paper does not pursue debugging per se but rather a thorough benchmarking of

10

PARLOT. It makes the following main contributions:

• It introduces a new tracing approach that makes it possible to capture the whole-

program call-return, call-stack, call-graph, and call-frequency information, including

all library calls, for every thread and process of HPC applications at low overhead in

both space and time.

• It describes a new incremental data compression algorithm to drastically reduce the

required tracing bandwidth, thus enabling the collection of whole-program traces,

which would be infeasible without on-the-fly compression.

• It presents PARLOT, a proof-of-concept tool that implements our compression-based

low-overhead tracing approach. PARLOT is capable of instrumenting x86 applica-

tions at the binary level (regardless of the source language used) to collect whole-

program call traces.

The remainder of this paper is organized as follows. Section 2.2 introduces the basic

ideas and infrastructure behind PARLOT and other tracing tools. Section 2.3 describes

the design of PARLOT in detail. Sections 2.4 and 2.5 present our evaluation of different

aspects of PARLOT and compare it with a similar tool. Section 2.6 concludes the paper

with a summary and future work.

2.2 Background and Related Work
Recording a log of events during the execution of an application is essential for bet-

ter understanding the program behavior and, in case of a failure, to locate the problem.

Recording this type of information requires instrumentation of the program either at the

source-code or the binary-code level. Instrumenting the source code by adding extra

libraries and statements to collect the desired information is easy for developers. However,

doing so modifies the code and requires recompilation, often involving multiple different

tools and complex hierarchies of makefiles and libraries, which can make this approach

cumbersome and frustrating for users. Instrumenting an executable at the binary level

using a tool is typically easier, faster, and less error prone for most users. Moreover, binary

instrumentation is language independent, portable to any system that has the appropriate

11

instrumentation tool installed, and provides machine-level insight into the behavior of the

application.

2.2.1 Binary Instrumentation

Executables can be instrumented statically, where the additional code is inserted into

the binary before execution, which results in a persistent modified executable, or dynam-

ically, where the modification of the executable is not permanent. In dynamic binary

instrumentation, code behavior can be monitored at runtime, making it possible to handle

dynamically-generated and self-modifying code. Furthermore, it may be feasible to attach

the instrumentation to a running process, which is particularly useful for long-running

applications and infinite loops.

Many different tools for investigating application behavior have been designed on top

of such Dynamic Binary Instrumentation (DBI) frameworks. For instance, Dyninst [72]

provides a dynamic instrumentation API that gives developers the ability to measure

various performance aspects. It is used in tools like Open-SpeedShop [90] and TAU [92] as

well as correctness debuggers like STAT [3]. Moreover, VampirTrace [57] uses it to provide

a library for collecting program execution logs.

Valgrind [79] is a shadow-value DBI framework that keeps a copy of every register

and memory location. It provides developers with the ability to instrument system calls

and instructions. Error detectors such as Memcheck [80] and call-graph generators like

CALLGRIND [110] are built upon Valgrind.2

We implemented PARLOT on top of PIN [70], a DBI framework for the IA-32, x86-64,

and MIC instruction-set architectures for creating dynamic program analysis tools. There

is also version of PIN available for the ARM architecture [36]. PARLOT mutates PIN to

trace the entry (call) and exit (return) of every executed function. Note that our tracing

and compression approaches can equally be implemented on top of other instrumentation

tools. For example, PMaC [104] is a DBI tool for the PowerPC/AIX architecture upon

which PARLOT could also be based.

2Given the absence of tools similar to PARLOT, we employ CALLGRIND as a “close-enough” tool in our
comparisons elaborated in §2.4.3. In this capacity, CALLGRIND is similar to PARLOT(M), a variant of PARLOT
that only collects traces from the main image. We perform such comparison to have an idea of how we fare
with respect to one other tool. In §2.5, we also present a self-assessment of PARLOT separately.

12

2.2.2 Efficient Tracing

When dealing with large-scale parallel programs, any attempt to capture reasonably

frequent events will result in a vast amount of data. Moreover, transferring and storing

the data will incur significant overhead. For example, collecting just one byte of infor-

mation per executed instruction yields on the order of a gigabyte of data per second on a

single high-end core. Storing the resulting multi-gigabyte traces from many cores can be a

challenge, even on today’s large hard disks.

Hence, to be able to capture whole-program call traces, we need a way to decrease the

space and runtime overhead. Compression can encode the generated data using a smaller

number of bits, help reduce the amount of data movement across the memory hierarchy,

and lower storage and network demands. Although the encoded data will later have to

be decoded for analysis, compressing them during tracing enables the collection of whole-

program traces.

The use of compression by itself is not new. Various performance evaluation tools [1,

61, 92] already employ compression during the collection of performance analysis data.

Tools such as ScalaTrace [83] also exploit the repetitive nature of time-step simulations [26].

Aguilar et al. [2] proposed a lossy compression mechanism using the Nami library [27]

for online MPI tracing. Mohror and Karavanic [74] investigated similarity-based trace

reduction techniques to store and analyze traces at scale.

Many performance and debugging tools for HPC applications [3, 78] rely on mech-

anisms such as MRNet [87] to accelerate the collection and aggregation of traces based

on an overlay network to overcome the challenge of massive data movement and analysis.

However, our experiments show that, due to the high compression ratio of PARLOT traces,

such mechanisms for data movement and aggregation may be unnecessary.

The novelty offered by PARLOT lies in the combination of compression speed, efficacy,

and low timing jitter made possible by its incremental lossless compression algorithm,

which is described in §2.3. It immediately compresses all traced information while the ap-

plication is running, that is, PARLOT does not record the uncompressed trace in memory.

As a result, just a few kilobytes of data need to be written out per thread and per second,

thus requiring only a small fraction of the disk or network bandwidth. The traces are

decompressed later when they are read for offline analysis. From the decompressed full

13

function-call trace, the complete call-graph, call-frequency, and caller-callee information

can be extracted. This can be done at the granularity of a thread, a group of threads,

or the whole application. We now elaborate on the design of PARLOT that makes these

innovations possible.

2.3 Design of PARLOT
Our experimental results in §2.5 highlight why compression is essential to make our

approach work. We used PARLOT to record a unique 16-bit identifier for every function

call and return. Tracing just this small amount of information without compression when

running the Mantevo miniapps [37] on Stampede 1 resulted in about 2 MB/s of data

per core on average. Extrapolating this value to all 102,400 cores of Stampede 1 (not

counting the accelerators) yields 205 GB/s of trace data, which exceeds the Lustre filesys-

tem’s parallel write performance of 150 GB/s. Enabling PARLOT’s compression algorithm

reduced the emitted trace data by a factor of 100 on average, a ratio that is quite stable w.r.t

scaling, making it possible to trace full-scale programs while leaving over 98% of the I/O

bandwidth to the application. Therefore, PARLOT should also work for codes with higher

bandwidth requirements than the ones we tested.

Figure 2.1 provides a general overview of PARLOT’s workflow. Basic blocks within

program executables are dynamically instrumented before being executed. The collected

data are compressed on-the-fly at runtime.

2.3.1 Tracing Operation

PARLOT uses the PIN API as its instrumentation mechanism to gather traces. In partic-

ular, it instructs PIN to instrument every thread launch and termination in the application

as well as every function entry and exit. The thread-launch instrumentation code initializes

the per-thread tracing variables and opens a file into which the trace data from that thread

will be written. The thread-termination code finalizes any ongoing compression, flushes

out any remaining entries, and closes the trace file. PARLOT assigns every static function in

each image (main program and all libraries) a unique unsigned 16-bit ID, which it records

in a separate file together with the image and function name. This file allows the trace

reader to map IDs back to function-name/image pairs.

14

Figure 2.1: Overview of PARLOT

For every function entry, PARLOT executes extra code that has access to the thread

ID, function ID, and current stack-pointer (SP) value. Based on the SP value, it performs

call-stack correction if necessary (see §2.3.4), adds the new function to a data structure it

maintains that holds the call stack (which is separate from the application’s runtime stack),

and emits the function ID into the trace file via an incremental compression algorithm (see

§2.3.2). All of this is done independently for each thread. Similarly, for every function exit,

PARLOT also executes extra code that has access to the thread ID, function ID, and current

SP value. Based on the SP value, it performs call-stack correction if necessary, removes the

function from its call-stack data structure, and emits the reserved function ID of zero into

the trace file to indicate an exit. As before, this is done via an incremental compression

algorithm. We use zero for all exits rather than emitting the function ID and a bit to specify

whether it is an entry or exit because using zeros results in more compressible output. This

way, half of the values in the trace will be zero.

2.3.2 Incremental Compression

PARLOT immediately compresses the traced information even before it is written to

memory. It does, however, keep a sliding window (circular buffer) of the most recent

15

uncompressed trace events, which is needed by the compressor. It compresses each func-

tion ID before the next function ID is known. The conventional approach would be to

first record uncompressed function IDs in a buffer and later compress the whole buffer

once it fills up. However, this makes the processing time very non-uniform. Whereas

almost all function IDs can be recorded very quickly since they just have to be written to

the buffer, processing a function ID that happens to fill the buffer takes a long time as it

triggers the compression of the entire buffer. This results in sporadic blocking of threads

during which time they make no progress towards executing the application code. Initial

experiments revealed that such behavior can be detrimental when one thread is polling

data from another thread that is currently blocked due to compression. For example, we

observed a several order of magnitude increase in entry/exit events of an internal MPI

library function when using block-based compression.

To remedy this situation, the compressor must operate incrementally, i.e., each piece of

trace data must be compressed when it is generated, without buffering it first, to ensure

that there is never a long-latency compression delay. Few existing compression algorithms

have been implemented in such a manner because it is more difficult to code up and

probably a little slower. Nevertheless, we were able to implement our algorithm (discussed

next) in this way so that each trace event is compressed with similar latency.

2.3.3 Compression Algorithm

We used the CRUSHER framework [11,14,16,111] to automatically synthesize an effec-

tive and fast lossless compression algorithm for our traces. CRUSHER is based on a library

of data transformations extracted from various compression algorithms. It combines these

transformations in all possible ways to generate algorithm candidates, which it then evalu-

ates on a set of training data. We gathered uncompressed traces from some of the Mantevo

miniapps [37] for this purpose. This evaluation revealed that a particular word-level

Lempel-Ziv (LZ) transformation followed by a byte-level Zero-Elimination (ZE) transfor-

mation works well. In other words, PARLOT’s trace entries, which are two-byte words,

are first transformed using LZ. The output is interpreted as a sequence of bytes, which is

transformed using ZE for further compression. The output of ZE is written to secondary

storage.

16

LZ implements a variant of the LZ77 algorithm [118]. It uses a 4096-entry hash table to

identify the most recent prior occurrence of the current value in the trace. Then it checks

whether the three values immediately before that location match the three trace entries

just before the current location. If they do not, the current trace entry is emitted and

LZ advances to the next entry. If the three values match, LZ counts how many values

following the current value match the values following that location. The length of the

matching substring is emitted and LZ advances by that many values. Note that all of this

is done incrementally. The history of previous trace entries available to LZ for finding

matches is maintained in a 64k-entry circular buffer.

ZE emits a bitmap in which each bit represents one input byte. The bits indicate

whether the corresponding bytes are zero or not. Following each eight-bit bitmap, ZE

emits the non-zero bytes.

As mentioned above, we had to implement the two transformations incrementally to

minimize the maximum latency. This required breaking them up into multiple pieces. De-

pending on the state the compressor is in when the next trace entry needs to be processed,

the appropriate piece of code is executed and the state updated. If the LZ code produces

an output, which it only does some of the time, then the appropriate piece of the ZE code

is executed in a similar manner.

2.3.4 PIN and Call-Stack Correction

To be able to decode the trace, i.e., to correctly associate each exit with the function

entry it belongs to, our trace reader maintains an identical call-stack data structure. Un-

fortunately, and as pointed out in the PIN documentation [53], it is not always possible to

identify all function exits. For example, in optimized code, a function’s instructions may

be inlined and interleaved with the caller’s instructions, making it sometimes infeasible

for PIN to identify the exit. As a consequence, we have to ensure that PARLOT works

correctly even when PIN misses an exit. This is why the SP values are needed.

During tracing, PARLOT not only records the function IDs in its call stack but also the

associated SP values. This enables it to detect missing exits and to correct the call stack

accordingly. Whenever a function is entered, it checks if there is at least one entry in the

call stack and, if so, whether its SP value is higher than that of the current SP. If it is lower,

17

we must have missed at least one exit since the runtime stack grows downwards (the SP

value decreases with every function entry and increases with every exit). If a missing exit

is detected in this manner, PARLOT pops the top element from its call stack and emits a

zero to indicate a function exit. It repeats this procedure until the stack is empty or its top

entry has a sufficiently high SP value. The same call-stack correction technique is applied

for every function exit whose SP value is inconsistent. Note that the SP values are only

used for this purpose and are not included in the compressed trace.

The result is an internally consistent trace of function entry and exit events, meaning

that parsing the trace will yield a correct call stack. This is essential so that the trace can be

decoded properly. Moreover, it means that the trace includes exits that truly happened in

the application but that were missed by PIN. Note, however, that our call-stack correction

is a best-effort approach and may, in rare cases, temporarily not reflect what the application

actually did. For example, this can happen for functions that do not create a frame on the

runtime stack. When implementing PARLOT on top of another DBI framework, call-stack

correction may not be needed, resulting in even lower PARLOT overhead.

2.4 Evaluation Methodology
2.4.1 Benchmarks and System

We performed our evaluations on the MPI-based NAS Parallel Benchmarks (NPB) [6].

NPB includes four inputs sizes. To keep the runtimes reasonable, we show results for the

class B (small-medium) and class C (medium-large) inputs.

We compiled the NPB codes with the mpicc and mpif77 wrappers of MVAPICH 2.2.1,

which are based on icc/ifort 14.0.2 using the prescribed -g and -O1 optimization flags.

Quick tests showed that higher optimization levels do not significantly improve the per-

formance.

We ran all experiments on Comet at the San Diego Supercomputer Center [94], whose

filesystem is NFS and Lustre. Comet has 1944 compute nodes, each of which has dual-

socket Intel Xeon E5-2680 v3 processors with a total of 28 cores (14 per socket) and 128

GB of main memory. Note that we only used 16 cores per node as many of the NPB

programs require a core count that is a power of two. To study the scaling behavior, we

ran experiments on 1, 4, 16 and 64 compute nodes, i.e., on up to 1024 cores.

18

2.4.2 Metrics

We use the following metrics to quantify and compare the performance of the tracing

tools. Unless otherwise noted, all results are based on the median of three identical exper-

iments.

• The tracing overhead is the runtime of the target application when it is being traced

divided by the runtime of the same application without tracing. This lower-is-better

ratio measures by how much the tracing (and the compression when enabled) slows

down the target application.

• The tracing bandwidth is the size of the trace information divided by the application

runtime. To make the results easier to compare, we generally list the tracing band-

width per core, i.e., the tracing bandwidth divided by the number of cores used.

This lower-is-better metric is expressed in kilobytes per second (kB/s) per core. It

specifies the average needed bandwidth to record the trace data.

• The compression ratio is the size of the uncompressed trace divided by the size of

the generated (compressed) trace. This higher-is-better ratio measures the factor by

which the compression reduces the trace size. In other words, without compression,

the tracing bandwidth would be higher by this factor.

2.4.3 Tracing Tools

We compare our PARLOT tool, implemented on top of PIN 3.5, with CALLGRIND

3.13. PARLOT was compiled with gcc 4.9.2 using PIN’s make system and CALLGRIND

with Valgrind’s make system. We created the following versions of PARLOT to evaluate

different aspects of its design.

• PARLOT(M) is the normal PARLOT tool configured to only collect function-call traces

from the main image of the application.

• PARLOT(A) is the normal PARLOT tool configured to collect function-call traces

from all images of the application, including library function calls.

19

• PIN-INIT is a crippled version of PARLOT from which the tracing code has been

removed. The purpose of PIN-INIT is to see how much of the overhead is due to

PIN.

• PARLOT-NC is the normal PARLOT tool but with compression disabled. It writes

out the captured data in uncompressed form. The purpose of PARLOT-NC is to

show the performance impact of the compression.

It proved surprisingly difficult to find a tool that is similar to PARLOT because there

appear to be no other tools that generate whole program call traces. In the end, we settled

on CALLGRIND as the most similar tool we could find and used it for our comparisons.

CALLGRIND is based on the Valgrind DBI tool. It collects function-call graphs combined

with performance data to show the user what portion of the execution time has been spent

Table 2.1: Overhead added by each tool

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 1.6 1.8 2.6 2.1 2.5 1.3 2.5 1.3 1.9
4 1.8 1.9 1.9 1.7 1.8 1.8 1.5 1.7 1.8
16 2.2 2.6 2.0 1.9 1.8 2.7 2.4 2.2 2.2
64 2.1 2.2 2.4 2.0 4.3 4.4 2.0 2.1 2.5

AVG 1.9 2.1 2.2 1.9 2.6 2.6 2.1 1.8 2.1

PARLOT(A)

1 1.8 2.7 4.2 2.8 4.2 1.7 4.8 1.7 2.8
4 2.6 3.1 3.4 2.8 3.0 2.8 2.8 2.7 2.9
16 3.5 4.2 3.4 2.9 2.8 4.3 4.5 3.7 3.6
64 3.1 3.3 3.8 3.0 5.4 4.7 3.2 3.3 3.7

AVG 2.8 3.3 3.7 2.9 3.9 3.4 3.8 2.8 3.2

CALLGRIND

1 8.6 6.0 8.9 10.1 2.5 7.5 3.3 6.6 6.1
4 6.0 3.6 2.9 3.5 1.5 5.2 1.2 5.8 3.2
16 4.3 3.3 2.2 2.2 1.7 4.6 1.8 4.3 2.8
64 2.3 2.0 1.7 2.1 4.1 4.0 1.5 2.5 2.3

AVG 5.3 3.7 3.9 4.5 2.4 5.3 2.0 4.8 3.6

C

PARLOT(M)

1 1.4 1.3 2.5 1.9 2.3 1.1 1.7 1.1 1.6
4 1.6 1.7 1.8 1.6 1.7 1.3 1.8 1.4 1.6
16 1.8 2.4 2.5 1.5 1.8 2.2 2.4 1.8 2.0
64 2.2 2.7 2.4 1.6 4.5 3.4 2.4 2.2 2.6

AVG 1.8 2.0 2.3 1.7 2.6 2.0 2.1 1.6 1.9

PARLOT(A)

1 1.5 1.6 3.2 2.0 2.8 1.2 2.5 1.2 1.9
4 1.9 2.4 2.6 2.1 2.6 1.7 3.1 1.7 2.2
16 2.7 3.5 4.1 2.1 2.8 3.2 4.0 2.5 3.0
64 3.6 4.1 4.2 2.2 5.5 4.4 4.2 3.0 3.8

AVG 2.4 2.9 3.5 2.1 3.4 2.6 3.5 2.1 2.7

CALLGRIND

1 8.5 4.4 13.2 13.1 3.3 7.9 5.9 5.1 6.9
4 8.7 4.5 4.8 6.4 1.7 6.4 2.8 6.3 4.6
16 6.9 3.9 3.1 2.8 1.8 6.4 2.1 6.1 3.7
64 4.4 3.5 2.1 2.5 4.2 5.2 2.1 3.8 3.3

AVG 7.1 4.1 5.8 6.2 2.8 6.5 3.2 5.3 4.6

20

in each function.

Each CALLGRIND trace file contains a sequence of function names (or their code) plus

numerical data for each function on its caller-callee relationship with other functions.

Moreover, it contains cost information for each function in terms of how many machine

instructions it read. This information is collected using hardware performance counters.

The format of the file is plain ASCII text. Interestingly, all numerical values are expressed

relative to previous values, i.e., they are delta (or difference) encoded. This simple form of

compression is enabled by default in CALLGRIND.

Figure 2.2: Average tracing overhead on the NPB applications - Input B

Figure 2.3: Average tracing overhead on the NPB applications - Input C

21

We believe the information traced by CALLGRIND is reasonably similar to the informa-

tion traced by PARLOT(M). Whereas CALLGRIND’s traces include performance data that

PARLOT does not capture, PARLOT records the whole-program call trace, which CALL-

GRIND does not capture. The full function-call trace is a strict superset of the call-graph

information that CALLGRIND records because the call graph can be extracted from the

function-call trace but not vice versa. In particular, CALLGRIND cannot recreate the order

of the function calls a thread made whereas PARLOT can.

2.5 Results
2.5.1 Tracing Overhead

Table 2.1 shows the tracing overhead of PARLOT(M), PARLOT(A), and CALLGRIND on

each application of the NPB benchmark suite for different node counts. The last column

of the table lists the geometric mean over all eight programs. The AVG rows show the

average over the four node counts.

On average, both PARLOT(M) and PARLOT(A) outperform CALLGRIND. The bolded

numbers in Table 2.1 for input C show that the average overhead is 1.94 for PARLOT(M),

2.73 for PARLOT(A), and 4.63 for CALLGRIND. Figures 2.2 and 2.3 show these results in

visual form.

The key takeaway point is that the overhead of PARLOT is roughly a factor of two

to three, which we believe users may be willing to accept, for example, if it helps them

Figure 2.4: Average required bandwidth per core (kB/s) on the NPB applications - Input B

22

Table 2.2: Required bandwidth per core (kB/s)

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 4.7 21.9 3.8 1.5 0.8 2.4 5.6 5.4 3.7
4 14.3 41.1 1.9 3.5 2.2 21.5 6.5 15.9 8.1
16 14.3 46.6 1.5 4.9 3.4 31.8 6.5 18.6 9.4
64 18.6 43.6 1.3 4.6 4.5 27.1 5.6 29.6 9.9

AVG 13.0 38.3 2.1 3.6 2.7 20.7 6.1 17.4 7.8

PARLOT(A)

1 48.7 89.4 47.2 45.6 60.0 53.6 60.8 54.3 56.2
4 61.8 101.2 45.2 55.1 53.2 71.1 54.9 73.6 62.7
16 74.0 116.9 47.4 48.9 47.8 100.9 55.8 84.6 68.0
64 81.8 110.2 44.2 48.0 37.8 100.3 52.7 99.9 66.5

AVG 66.6 104.4 46.0 49.4 49.7 81.5 56.0 78.1 63.3

CALLGRIND

1 1.6 7.7 7.4 4.6 39.5 2.6 34.4 2.7 6.7
4 6.5 16.0 22.1 15.7 45.5 8.6 45.5 7.8 16.3
16 17.2 24.6 37.4 23.8 29.9 16.2 51.5 15.8 24.9
64 26.8 27.7 45.9 25.1 11.0 17.8 45.3 20.2 25.0

AVG 13.0 19.0 28.2 17.3 31.5 11.3 44.2 11.6 18.2

C

PARLOT(M)

1 1.8 17.0 5.2 1.2 0.7 0.8 3.6 1.4 2.2
4 7.5 44.9 3.0 2.5 2.1 20.1 7.1 13.7 7.6
16 16.3 55.0 1.8 6.1 3.4 34.1 7.2 20.7 10.7
64 17.5 61.4 1.3 5.9 4.4 38.3 5.6 26.1 10.9

AVG 10.8 44.6 2.8 3.9 2.7 23.3 5.9 15.5 7.8

PARLOT(A)

1 17.8 53.4 26.3 20.9 48.3 25.3 52.6 19.5 30.0
4 51.8 95.8 36.8 43.8 51.4 58.4 54.2 65.8 55.2
16 75.4 121.0 44.3 61.4 46.9 101.1 56.5 101.3 71.4
64 80.6 135.2 43.5 46.3 37.1 117.9 54.1 99.0 69.0

AVG 56.4 101.4 37.7 43.1 45.9 75.7 54.3 71.4 56.4

CALLGRIND

1 0.4 3.1 2.0 1.1 14.6 0.7 7.0 0.8 1.9
4 1.8 8.9 7.7 4.5 31.7 2.8 21.0 2.8 6.4
16 6.0 15.8 22.9 10.8 26.5 7.5 39.1 7.0 13.7
64 14.3 19.6 35.8 12.2 11.1 11.9 40.7 12.8 17.4

AVG 5.6 11.8 17.1 7.1 21.0 5.7 26.9 5.8 9.8

23

Figure 2.5: Average required bandwidth per core (kB/s) on the NPB applications - Input
C

debug their applications. This is promising especially when considering how detailed the

collected trace information is and that most of the overhead is due to PIN (see §2.5.4).

Note that PARLOT’s overhead is typically lower than that of CALLGRIND, which collects

less information.

The overhead of PARLOT increases as we scale the applications to more compute nodes.

However, the increase is quite small. Going from 16 to 1024 cores, a 64-fold increase in

parallelism, only increases the average overhead by between 1.3- and 2.1-fold. In contrast,

CALLGRIND’s overhead decreases with increasing node count, making it more scalable.

Having said that, CALLGRIND’s overhead is larger for the C inputs whereas PARLOT’s

overhead is larger for the smaller B inputs. In other words, PARLOT scales better to larger

inputs than CALLGRIND.

PARLOT’s scaling behavior can be explained by correlating it with the expected function-

call frequency. When distributing a fixed problem size over more cores, each core receives

less work. As a consequence, less time is spent in the functions that process the work,

resulting in more function calls per time unit, which causes more work for PARLOT. In

contrast, when distributing a larger problem size over the same number of cores, each core

receives more work. Hence, more time is spent in the functions that process the work,

resulting in fewer function calls per time unit, which causes less work for PARLOT and

therefore less tracing overhead. Hence, we believe PARLOT’s overhead to be even lower

24

on long-running inputs, which is where our tracing technique is needed the most.

In summary, PARLOT’s overhead is in the single digits for all evaluated applications

and configurations, including for 1024-core runs. It appears to scale reasonably to larger

node counts and well to larger problem sizes.

2.5.2 Required Bandwidth

Table 2.2, Fig. 2.4 and Fig. 2.5 show how much trace bandwidth each tool requires

during the application execution. On average, PARLOT(M) requires less bandwidth than

CALLGRIND, especially for smaller inputs. PARLOT(A)’s bandwidth is much higher as

it collects call information from all images and not just the main image like PARLOT(M)

does.

We see that the required bandwidth for different input sizes of the NPB applications are

almost equal in PARLOT. According to the NPB documentation, the number of iterations

for inputs B and C are the same for all applications. They only differ in the number of

elements or the grid size. It is clear that the required bandwidth of PARLOT is independent

of the problem size, unlike CALLGRIND, where the input size has a linear impact on the

results.

Figure 2.6: Average compression ratio of PARLOT on the NPB applications - Input B

25

Figure 2.7: Average compression ratio of PARLOT on the NPB applications - Input C

2.5.3 Compression Ratio

Table 2.3 shows the compression ratios for all configurations and inputs. On average,

PARLOT stores between half a kilobyte and a kilobyte of trace information in a single byte.

We observe that the average compression ratio for PARLOT(A) on input C is 644.3, and

its corresponding required bandwidth from Table 2.2 is 56.4 kB/s. This means PARLOT

can collect more than 36 MB worth of data per core per second while only needing 56

Figure 2.8: Tracing overhead breakdown - Input B

26

Figure 2.9: Tracing overhead breakdown - Input C

Figure 2.10: Variability of PARLOT(M) overhead on 16 nodes - Input B

kB/s of the system bandwidth, leaving the rest of the available bandwidth to the application. In

comparison, CALLGRIND collects less than 100 kB of data but still adds more overhead

compared to either PARLOT(A) or PARLOT(M). The average amount of trace data that can

be collected by PARLOT(A) is 360x (85x for PARLOT(M)) larger than that for CALLGRIND.

In the best observed case, the compression ratio of PARLOT exceeds 21000. This is partic-

ularly impressive because it was achieved with relatively low overhead and incremental

27

Figure 2.11: PARLOT-NC tracing overhead breakdown - Input B

on-the-fly compression. Generally, the compression ratios of PARLOT(M) are higher than

those of PARLOT(A) because the variety of distinct function calls on the main image is

smaller than when tracing all images, thus compression performs better on PARLOT(M).

Also by looking at Fig. 2.4, Fig. 2.5, Fig. 2.6 and Fig. 2.7, we find EP to have the highest

compression ratio of the NPB applications. At the same time, it has the minimum required

bandwidth. The opposite is true for CG, which exhibits the lowest compression ratio

and the highest required bandwidth. CG is a conjugate gradient method with irregular

memory accesses and communications whereas EP is an embarrassingly parallel random

number generator. CG’s whole-program trace contains a larger number of distinct calls

and more complex patterns than that of EP, thus resulting in a higher bandwidth and

lower compression ratio.

PARLOT’s compression mechanism works better on larger input sizes because larger

inputs tend to result in longer streams of similar function calls (e.g., a call that is made for

every processed element).

2.5.4 Overheads

Tables 2.4 and 2.5 present the average overhead added to each application for different

versions of PARLOT. The last row of these two tables presents the geometric mean. This

information captures how much each phase of PARLOT slows down the native execution.

28

Table 2.3: Compression ratio

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 3 035.9 94.4 12 456.2 12 173.5 9 718.4 167.7 99.1 878.3 1 255.2
4 586.6 82.5 10 368.4 1 737.1 909.2 140.3 255.0 338.2 559.4
16 346.7 113.3 8 563.9 1 077.4 1 200.6 179.0 387.6 123.0 496.8
64 252.2 147.8 7 611.0 1 122.6 1 908.0 366.8 437.3 152.9 591.1

AVG 1 055.4 109.5 9 749.9 4 027.6 3 434.0 213.5 294.7 373.1 725.6

PARLOT(A)

1 514.5 137.4 3 335.8 1 226.7 543.2 314.6 260.9 303.9 500.2
4 315.7 137.2 1 266.9 436.2 316.2 287.3 329.6 199.7 330.7
16 226.9 181.6 1 246.7 1 026.5 927.1 299.3 469.3 171.5 430.4
64 329.2 247.3 1 394.1 1 043.9 1 984.6 410.3 548.5 307.2 597.6

AVG 346.6 175.9 1 810.9 933.3 942.8 327.9 402.1 245.6 464.7

C

PARLOT(M)

1 8 619.0 111.2 13 068.0 21 335.6 21 856.5 350.0 247.4 1 977.4 2 371.4
4 1 910.6 110.5 12 418.7 6 520.3 2 256.6 112.8 268.0 472.7 928.2
16 580.8 133.2 11 017.4 1 239.3 1 347.9 164.5 396.9 143.1 582.8
64 322.8 131.9 9 155.0 1 065.1 1 896.3 223.7 465.7 168.9 585.7

AVG 2 858.3 121.7 11 414.7 7 540.1 6 839.3 212.7 344.5 690.5 1 117.0

PARLOT(A)

1 2 579.4 181.8 7 377.0 5 143.1 1 520.4 408.2 314.8 650.7 1 107.4
4 448.6 161.3 3 194.6 1 062.9 527.3 274.7 319.4 237.4 477.4
16 285.1 185.7 1 765.5 588.9 1 106.3 273.6 467.4 141.7 426.9
64 290.0 214.7 1 512.9 1 237.3 2 038.7 329.0 496.2 270.8 565.8

AVG 900.8 185.9 3 462.5 2 008.1 1 298.2 321.4 399.4 325.2 644.4

Table 2.4: Tracing overhead of versions of PARLOT(M)- Input B - Pin: PIN-INIT, P:
PARLOT, Pnc: PARLOT-NC

Input: B
Nodes : 1 4 16 64

Detail Tools: Pin P Pnc Pin P Pnc Pin P Pnc Pin P Pnc

Main

bt 1.5 1.5 5.6 1.7 1.7 5.0 2.1 2.1 5.0 1.8 2.1 3.5
cg 1.7 1.8 2.3 1.8 1.8 2.6 2.7 2.5 4.4 2.3 2.1 4.6
ep 2.9 2.6 20.4 1.9 1.8 5.3 2.4 1.9 3.0 2.6 2.3 2.6
ft 1.8 2.1 6.1 1.7 1.7 2.7 2.0 1.8 2.2 2.1 1.9 2.1
is 2.4 2.4 4.8 1.7 1.7 2.0 2.1 1.7 1.8 4.5 4.3 5.7
lu 1.3 1.3 1.4 1.7 1.7 2.2 2.7 2.7 3.6 3.0 4.3 6.1

mg 2.5 2.5 2.7 1.5 1.5 1.5 2.6 2.4 2.6 1.9 1.9 1.8
sp 1.3 1.3 2.4 1.7 1.7 3.5 2.1 2.1 2.3 1.9 2.0 2.5

GM 1.8 1.9 4.1 1.7 1.7 2.9 2.3 2.1 3.0 2.4 2.5 3.3

Table 2.5: Tracing overhead of versions of Pa - Input B - Pin: PIN-INIT, P: PARLOT, Pnc:
PARLOT-NC

Input: B
Nodes : 1 4 16 64

Detail Tools: Pin P Pnc Pin P Pnc Pin P Pnc Pin P Pnc

All

bt 1.7 1.8 6.1 2.3 2.5 6.1 3.2 3.5 9.0 2.8 3.1 7.5
cg 2.6 2.7 3.8 2.8 3.0 4.4 4.0 4.2 11.3 3.3 3.2 10.3
ep 4.3 4.1 22.2 3.1 3.4 7.1 3.1 3.3 4.5 4.1 3.8 4.1
ft 2.8 2.7 6.8 2.6 2.7 3.8 2.8 2.9 3.6 3.1 3.0 3.5
is 4.4 4.2 7.0 2.8 2.9 3.4 2.9 2.8 3.2 5.3 5.4 8.8
lu 1.7 1.7 2.3 2.5 2.7 4.8 3.9 4.3 10.4 4.4 4.6 23.4

mg 4.8 4.7 5.3 2.5 2.7 3.0 4.3 4.4 5.2 2.7 3.1 3.2
sp 1.7 1.7 3.0 2.4 2.6 5.0 3.2 3.6 5.6 2.7 3.3 11.6

GM 2.7 2.7 5.5 2.6 2.8 4.5 3.4 3.6 6.0 3.5 3.6 7.4

29

Figure 2.12: PARLOT-NC tracing overhead breakdown - Input C

In general, one expects the following inequality to hold: the overhead of PIN-INIT

should be less than that of PARLOT, which should be less than that of PARLOT-NC. This is

not always the case because of the non-deterministic runtimes of the applications. In fact,

the variability across three runs of each experiment is shown in Fig. 2.10 where we present

the minimum, maximum and median overheads. These overheads are for input size B and

16 nodes. This variability explains the seeming inconsistencies in Tables 2.4 and 2.5.

On average, PIN-INIT adds an overhead of 3.28 and PARLOT(A) adds an overhead of

3.42. This means that almost 96% of PARLOT(A)’s overhead is due to PIN. The results of

PARLOT(M) and other inputs follow the same pattern as shown in Fig. 2.8 and 2.9. The

overhead that PARLOT (excluding the overhead of PIN-INIT) adds to the applications is

very small. If we were to switch to a different instrumentation tool that is not as general as

PIN but more lightweight, the overhead would potentially reduce drastically.

2.5.5 Compression Impact

Fig. 2.11 and Fig. 2.12 show the overhead breakdown of PARLOT-NC, which illustrate

the impact of compression. They also highlight the importance of incorporating compres-

sion directly in the tracing tool. On average, PARLOT-NC slows down the application

execution almost 2x more than PARLOT(A). The average overhead across Table 2.5 for

30

PARLOT(A) is 3.4. The corresponding factor for PARLOT-NC is 6.6. The numbers of

PARLOT(M) and input C follow the same pattern. For example, PARLOT-NC slows down

the application execution almost 1.66x more than PARLOT(M).

Clearly, compression not only lowers the storage requirement but also the overhead.

This is important as it shows that the extra computation to perform the compression is

more than amortized by the reduction in the amount of data that need to be written out.

This result validates our approach and highlights that incremental, on-the-fly compres-

sion is likely essential to make whole-program tracing possible at low overhead.

2.6 Discussion and Conclusion
In this paper, we present PARLOT, a portable low overhead dynamic binary instrumentation-

based whole-program tracing approach that can support a variety of dynamic program

analyses, including debugging. Key properties of PARLOT include its on-the-fly trace

collection and compression that reduces timing jitter, I/O bandwidth, and storage require-

ments to such a degree that whole-program call/return traces can be collected efficiently

even at scale.

We evaluate various versions of PARLOT created by disabling/enabling compression,

not collecting any traces, etc. In order to provide an intuitive comparison against a well

known tool, we also compare PARLOT to CALLGRIND. Our metrics include the tracing

overhead, required bandwidth, achieved compression ratio, initialization overhead, and

the overall impact of compression. Detailed evaluations on the NAS parallel benchmarks

running on up to 1024 cores establish the merit of our tool and our design decisions.

PARLOT can collect more than 36 MB worth of data per core per second while only needing

56 kB/s of bandwidth and slowing down the application by 2.7x on average. These results

are highly promising in terms of supporting whole program tracing and debugging, in

particular when considering that most of the overhead is due to the DBI tool and not

PARLOT.

The traces collected by PARLOT cut through the entire stack of heterogeneous (MPI,

OpenMP, PThreads) calls. This permits a designer to project these traces onto specific APIs

of interest during program analysis, visualization, and debugging.

A number of improvements to PARLOT remain to be made. These include allowing

31

users to selectively trace at specific interfaces: doing so can further increase compression

efficiency by reducing the variety of function calls to be handled by the compressor. We

also discuss the need to bring down initialization overheads, i.e., by switching to a less

general-purpose DBI tool.

Acknowledgment
This research was supported by the NSF. We thank our colleague Dr. Hari Sundar

from the University of Utah who provided insight and expertise that greatly assisted the

research. We also thank the Texas Advanced Computing Center (TACC) and the San

Diego Supercomputer Center (SDSC) for the infrastructure they provided for running our

experiments.

CHAPTER 3

WHOLE-PROGRAM TRACE ANALYSIS

This chapter is based on the work published at the 2019 IEEE International Conference

on Cluster Computing [99]1. We present a tool called DiffTrace that approaches debugging

via whole program tracing and diffing of typical and erroneous traces. After collecting

these traces, a user-configurable front-end filters out irrelevant function calls and then

summarizes loops in the retained function calls based on state-of-the-art loop extraction

algorithms. Information about these loops is inserted into concept lattices, which we

use to compute salient dissimilarities to narrow down bugs. DiffTrace is a clean start

that addresses debugging features missing in existing approaches. Our experiments on

an MPI/OpenMP program called ILCS and initial measurements on LULESH, a DOE

miniapp, demonstrate the advantages of the proposed debugging approach.

3.1 Introduction
Debugging high-performance computing code remains a challenge at all levels of scale.

Conventional HPC debuggers [4, 35] excel at many tasks such as examining the execution

state of a complex simulation in detail and allowing the developer to re-execute the pro-

gram close to the point of failure. However, they do not provide a good understanding of

why a program version that worked earlier failed upon upgrade or feature addition. Inno-

vative solutions are needed to highlight the salient differences between two executions in a

manner that makes debugging easier as well as more systematic. A recent study conducted

under the auspices of the DOE [34] provides a comprehensive survey of existing debug-

ging tools. It classifies them under four software organizations (serial, multithreaded,

multi-process, and hybrid), six method types (formal methods, static analysis, dynamic

1©2019 IEEE. Adapted, with permission, from S. Taheri, I. Briggs, M. Burtscher and G. Gopalakrishnan,
“DiffTrace: Efficient Whole-Program Trace Analysis and Diffing for Debugging”, 2019 IEEE International
Conference on Cluster Computing (CLUSTER), 2019, pp. 1-12, doi: 10.1109/CLUSTER.2019.8891027

33

analysis, nondeterminism control, anomaly detection, and parallel debugging), and lists

a total of 30 specific tools. Despite this abundance of activity and tools, many significant

problems remain to be solved before debugging can be approached by the HPC community as

a collaborative activity so that HPC developers can extend a common framework.

Almost all debugging approaches seek to find outliers (“unexpected executions”) amongst

thousands of running processes and threads. The approach taken by most existing tools is

to look for symptoms in a specific bug-class that they cover. Unfortunately, this approach

calls for a programmer having a good guess of what the underlying problem might be,

and to then pick the right set of tools to deploy. If the guess is wrong, the programmer

has no choice but to refine their guess and look for bugs in another class, re-executing the

application and hoping for better luck with another tool. This iterative loop of re-execution

followed by applying a best-guess tool for the suspected bug class can potentially consume

large amounts of execution cycles and wastes an expert developer’s time. More glaring is

the fact that these tools must recreate the execution traces yet again: they do not have

means to hand off these traces to another tool or cooperate in symbiotic ways.

We cannot collect all relevant pieces of information necessary to detect all possible bug

classes such as resource leaks, deadlocks, and data races. Each such bug requires its at-

tributes to be kept. Also, debugging is not fully automatable (it is an undecidable problem

in general) and must involve human thinking: at least to reconcile what is observed against

the deeper application-level semantics. However, (1) we believe that it is still possible to

collect one standard set of data and use it to make an initial triage in such a way that

it can guide a later, deeper debugging phase to locate which of the finer bug gradations

(e.g., resource leaks or races) brought the application down. Also, (2) we believe that

it is possible to engage the human with respect to understanding structured presentations of

information.

Our DiffTrace framework addresses both issues. The common set of data it uses is

a whole program function call trace collected per process/thread. DiffTrace relies on novel

ways to diff a normal trace and a fault-laden trace to guide the debugging engineer closer

to the bug. While our work has not (yet) addressed situations in which millions of threads

and thousands of processes run for days before they produce an error, we strongly believe

that we can get there once we understand the pros and cons of our initial implementation

34

of the DiffTrace tool, which is described in this paper. The second issue is handled in

DiffTrace by offering a novel collection of modalities for understanding program execution

diffs. We now elaborate on these points by addressing the following three problems.

3.1.1 Problem 1 – Collecting Whole-Program Heterogeneous Function-Call
Traces Efficiently

Not only must we have the ability to record function calls and returns at one API such

as MPI, increasingly we must collect calls/returns at multiple interfaces (e.g., OpenMP,

PThreads, and even inner levels such as TCP). The growing use of heterogeneous paral-

lelization necessitates that we understand MPI and OpenMP activities (for example) to

locate cross-API bugs that are often missed by other tools. Sometimes, these APIs contain

the actual error (as opposed to the user code), and it would be attractive to have this

debugging ability.

Solution to Problem 1: In DiffTrace, we choose Pin-based whole program binary tracing,

with tracing filters that allow the designer to collect a suitable mixture of API calls/returns.

We realize this facility using ParLOT, a tool designed by us and published earlier [100]. In

our research, we have thus far demonstrated the advantage of ParLOT with respect to

collecting both MPI and OpenMP traces from a single run of a hybrid MPI/OpenMP program.

We demonstrate that, from this single type of trace, it is possible to pick out MPI-level bugs

and/or OpenMP-level bugs. While whole-program tracing may sound extremely compu-

tation and storage intensive, ParLOT employs lightweight on-the-fly compression tech-

niques to keep these overheads low. It achieves compression ratios exceeding 21,000 [100],

thus making this approach practical, demanding only a few kilobytes per second per core

of bandwidth.

3.1.2 Problem 2 – Need to Generalize Techniques for Outlier Detection

Given that outlier detection is central to debugging, it is essential to use efficient repre-

sentations of the traces to be able to systematically compute distances between them with-

out involving human reasoning. The representation must also be versatile enough to be

able to “diff” the traces with respect to an extensible number of vantage points. These vantage

points could be diffing traces concerning process-level activities, thread-level activities, a

combination thereof, or even finite sequences of process/thread calls (say, to locate changes

35

in caller/callee relationships).

Solution to Problem 2: DiffTrace employs concept lattices to amalgamate the collected

traces. Concept lattices have previously been employed in HPC to perform structural

clustering of process behaviors [109] to present performance data more meaningfully to

users. The authors of that paper use the notion of Jaccard distances to cluster performance

results that are closely related to process structures (determined based on caller/callee re-

lationships). In DiffTrace, we employ incremental algorithms for building and maintaining

concept lattices from the ParLOT-collected traces. In addition to Jaccard distances, in our

work, we also perform hierarchical clustering of traces and provide a tunable threshold for

outlier detection. We believe that these uses of concept lattices and refinement approaches

for outlier detection are new in HPC debugging.

3.1.3 Problem 3 – Loop Summarization

Most programs spend most of their time in loops. Therefore, it is important to employ

state-of-the-art algorithms for loop extraction from execution traces. It is also important to

be able to diff two executions with respect to changes in their looping behaviors. In our

experience, presenting such changes using good visual metaphors tends to highlight many

bug types immediately.

Solution to Problem 3: DiffTrace utilizes the rigorous notion of Nested Loop Representa-

tions (NLRs) for summarizing traces and representing loops. Each repetitive loop structure

is given an identifier, and nested loops are expressed as repetitions of this identifier expo-

nentiated (as with regular expressions). This approach to summarizing loops can help

manifest bugs where the program does not hang or crash but nevertheless runs differently

in a manner that informs the developer engaged in debugging.

Organization: §3.2 illustrates the contributions of this paper on a simple example.

§3.3 presents the algorithms underlying DiffTrace in more detail. §3.4 summaries the

experimental methodology before showing a medium-sized case study involving MPI

and OpenMP. §3.5 shows initial measurements and examples on LULESH [58], a DOE

common mini app. §3.6 summarizes selected related works. §3.7 concludes the paper with

a discussion.

36

Figure 3.1: DiffTrace Overview

Pre-process
Normal Traces

Faulty Traces

NLR

FCA

JSMNormal

JSM
Suspicious Traces diffNLR

D

Faulty

Parameter
RefinementFilter NLR Constants Attribute Linkage Method

JSM

Loop
Detection

Hierarchical
Clustering

Suspicious
MPI

Processes

Suspicious
OMP

Threads
1
2
3
4
5

X1
X2
X3
X4
X5

Y1
Y2
Y3
Y4
Y5

3.2 DiffTrace Overview
3.2.1 High-level Overview

DiffTrace employs ParLOT’s whole-program function-call and return trace-collection

mechanism, where ParLOT captures traces via Pin [70] and incrementally compresses

them using a new compression scheme [100]. ParLOT can capture functions at two levels:

the main image (which does not include library code) and all images (including all library

code). As the application runs, ParLOT generates per-thread trace files that contain the

compressed sequence of the IDs of the executed functions. The compression mechanism is

light-weight yet effective, thus reducing not only the required bandwidth and storage but

also the runtime relative to not compressing the traces. As a result, ParLOT can capture

whole-program traces at low overhead while leaving most of the disk bandwidth to the

application. Using whole-program traces substantially reduces the number of overall

debug iterations because it allows us to repeatedly analyze the traces offline with different

filters.

Figure 3.1 provides an overview of the DiffTrace toolchain in terms of the blue flows

(fault-free) and red flows (faulty). In a broad sense, code-level faults in HPC applications

(e.g., the use of wrong subscripts) turn into observable code-level misbehaviors (e.g., an

unexpected number of loop iterations), many of which turn into application-level issues.

In our study of DiffTrace, we evaluate success merely in terms of the efficacy of observing

these misbehaviors in response to injected code-level faults (we rely on a rudimentary fault

injection framework complemented by manual fault injection).

The preprocessing stage removes calls/returns at the ignored APIs. The nested loop

recognition (NLR) mechanism then extracts loops from traces. The resulting information

37

not only serves as a lossless abstraction to ease the rest of the trace analysis but also serves

as a per-thread measure of progress. The FCA (Formal Concept Analysis) stage conducts a

systematic way to arrange objects (in our case threads) and attributes (we support a rich

collection of attributes including the set of function calls a thread makes, the set of pairs

of function calls made—this reflects calling context—etc.). Weber et al.’s work [28, 109]

employs FCA exactly in this manner (including the use of pairs of calls), however, for

grouping performance information. Our new contribution is showing that FCA can play a

central role in debugging HPC applications.

While faults induce asymmetries (“aberrations”) in program behaviors, one cannot

locate faults merely by locating the asymmetries in an overall collection of process traces.

The reason is that even in a collection of MPI processes or threads within these processes,

some processes/threads may serve as a master while others serve as workers. Thus,

we must have a base level of similarities computed even for normal behaviors and then

compute how this similarity relation changes when faults are introduced. This is highlighted

by the blue and red rectangular patches in Figure 3.1 that, respectively, iconify the Jaccard

similarity matrices computed for the normal behavior (above) and the erroneous behavior

(below). This is shown as the “diff Jaccard similarity matrix” in greyscale at the juncture

of JSMnormal and JSM f aulty.

After the JSMD matrix is computed, we invoke a hierarchical clustering algorithm that

computes the “B-score” and helps rank suspicious traces/processes. The diffNLR repre-

sentation is then extracted. Intuitively, this is a diff of the loop structures of the normal

and abnormal threads/processes. This diagram shows (as with git diff and text diff) a

main stem comprised of green rectangles (“common looping structure”) and red/blue diff

rectangles showing how the loop structures of the normal and erroneous threads differ

with respect to the main stem. We show that this presentation often helps the debugging

engineer locate the faults.

Last but not least, we strongly believe that a framework such as DiffTrace can serve

as an important HPC community resource. Each debugging tool designer who uses Diff-

Trace can extend it by incorporating new attributes and clustering methods, but otherwise

retain the overall tool structure. Such a “playground” for developing and exploring new

methods for debugging does not exist in HPC. There is also the intriguing possibility that

38

many of the 30-odd tools mentioned in §4.1 can be made to focus on the problems highlighted

by diffNLR, thus gaining efficiency (this will be part of our future work).

In this paper, we describe DiffTrace as a relative debugging [86] tool, in that bugs are

caught with respect to JSMD which is a change from the previous code version found

working. However, many types of faults may be apparent just by analyzing JSM f aulty:

for instance, processes whose execution got truncated will look highly dissimilar to those

that terminated normally. In those use cases of DiffTrace, the B-score based ranking can

then be made on JSM f aulty directly.

3.2.2 Example Walk-through

We now employ Figure 3.2—a textbook MPI odd/even sorting example—to illustrate

DiffTrace. Odd/even sorting is a parallel variant of bubble sort and operates in two

alternating phases: in the even phase, the even processes exchange (conditionally swap)

values with their right neighbors, and in the odd phase, the odd processes exchange values

with their right neighbors.

A waiting trap in this example is this: the user may have swapped the Recv; Send

order in the else part, creating head-to-head ‘‘Send || Send’’ deadlock under low-

buffering (MPI EAGER limit). We will now show how DiffTrace helps pick out this root-

cause.

Figure 3.2: Simplified MPI implementation of Odd/Even Sort

39

3.2.3 Pre-processing

Using ParLOT’s decoder, each trace is first decompressed. Next, the desired functions

are extracted based on predefined (Table 3.1) or custom regular expressions (i.e., filters) and

kept for later phases. Table 3.2 shows the pre-processed traces (Ti) of odd/even sort with

four processes. Ti is the trace that stores the function calls of process i.

3.2.4 Nested Loop Representation

Virtually all dynamic statements are found within loops. Function calls within a loop

body yield repetitive patterns in ParLOT traces. Inspired by ideas for the detection of repet-

itive patterns in strings [77] and other data structures [59], we have adapted the Nested

Loop Recognition (NLR) algorithm by Ketterlin et al. [60] to detect repetitive patterns

in ParLOT traces (cf. Section 3.3.1). Detecting such patterns can be used to measure the

progress of each thread, revealing unfinished or broken loops that may be the consequence

of a fault.

For example, the loop in line 3 of oddEvenSort() (Figure 3.2) iterates four times when

run with four processes. Thus each Ti contains four occurrences of either [MPI Send-

MPI Recv] (even i) or [MPI Recv-MPI Send] (odd i). By keeping only MPI functions and

converting each Ti into its equivalent NLR, Table 3.2 can be reduced to Table 3.3 where L0

and L1 represent the loop body [MPI Send-MPI Recv] and [MPI Recv-MPI Send], respectively.

The integer after the ˆ symbol in NLR represents the loop iteration count. Note that, since the

first and last processes only have one-way communication with their neighbors, T0 and T3

Table 3.1: Pre-defined Filters
Category Sub-Category Description

Primary
Returns Filter out all returns

PLT
Filter out the ”.plt” function calls for external functions/procedures that
their address needs to be resolved dynamically from Procedure Linkage
Table (PLT)

MPI

MPI All Only keep functions that start with ”MPI ”
MPI Collectives Only keep MPI collective calls (MPI Barrier, MPI Allreduce, etc)
MPI Send/Recv Only keep MPI Send, MPI Isend, MPI Recv, MPI Irecv and MPI Wait

MPI Internal Library Keep all inner MPI library calls

OMP
OMP All Only keep OMP calls (starting with GOMP)

OMP Critical Only keep OMP CRITICAL START and OMP CRITICAL END
OMP Mutex Only keep OMP Mutex calls

System

Memory Keep any memory related functions (memcpy, memchk, alloc, malloc, etc)
Network Keep any network related functions (network, tcp, sched, etc)

Poll Keep any poll related functions (poll, yield, sched, etc)
String Keep any string related functions (strlen, strcpy, etc)

Advanced
Custom Any regular expression can be captured

Everything Does not filter anything

40

Table 3.2: The generated traces for odd/even execution with four processes
T0 T1 T2 T3

...
main main main main
MPI Init MPI Init MPI Init MPI Init
MPI Comm Rank MPI Comm Rank MPI Comm Rank MPI Comm Rank
MPI Comm Size MPI Comm Size MPI Comm Size MPI Comm Size
...
oddEvenSort oddEvenSort oddEvenSort oddEvenSort
...
findPtr findPtr findPtr findPtr
MPI Send MPI Recv MPI Send MPI Recv
MPI Recv MPI Send MPI Recv MPI Send
...
findPtr findPtr findPtr findPtr
MPI Send MPI Recv MPI Send MPI Recv
MPI Recv MPI Send MPI Recv MPI Send
...
MPI Finalize MPI Finalize MPI Finalize MPI Finalize

perform only half as many iterations.

3.2.5 Hierarchical Clustering via FCA

Processes in HPC applications are known to fall into predictable equivalence classes.

The widely used and highly successful STAT tool [3] owes most of its success for being

able to efficiently collect stack traces (nested sequences of function calls), organize them

as prefix-trees, and equivalence the processes into teams that evolve in different ways.

Coalesced stack trace graphs (CSTG, [18]) have proven effective in locating bugs within

Uintah [17] and perform stat-like equivalence class formation, albeit with the added detail

of maintaining calling contexts. Inspired by these ideas, FCA-based clustering provides

the next logical level of refinement in the sense that (1) we can pick any of the multiple

attributes one can mine from traces (e.g., pairs of function calls, memory regions accessed

by processes, locks held by threads, etc.), and (2) form this equivalencing relation quite

naturally by computing the Jaccard distance between processes/threads. In general, such

a classification is powerful enough to distinguish structurally different threads from one

another (e.g., MPI processes from OpenMP threads in hybrid MPI+OpenMP applications)

and reduce the search space for bug location to a few representative classes of traces that

are distinctly dissimilar.2

2As emphasized earlier, we perform “sky subtraction” as in astronomy to locate comets; in our case, we
diff the diffs, which is captured in JSMD.

41

Figure 3.3: Sample Concept Lattice from
Object-Attribute Context in Table 3.4

0 1 2 3

0
1

2
3

1 0.67 1 0.67

0.67 1 0.67 1

1 0.67 1 0.67

0.67 1 0.67 1
0.66

0.72

0.78

0.84

0.90

0.96

Figure 3.4: Pairwise Jaccard Similarity
Matrix (JSM) of MPI Processes in Sample
Code

A formal context is a triple K = (G, M, I) where G is a set of objects, M is a set of

attributes, and I ⊆ G × M is an incidence relation that expresses which objects have which

attributes. Table 3.4 shows the formal context of the preprocessed odd/even-sort traces.

We can employ as attributes either the function calls themselves or the detected loop

bodies (each detected loop is assigned a unique ID, and one can diff with respect to these

IDs). The context shows that all traces include the functions MPI Init(), MPI Comm size(),

MPI Comm rank() and MPI Finalize(). The even traces contain the loop L0 and the odd

traces the loop L1.

Figure 3.3 shows the concept lattice derived from the formal context in Table 3.4 and is

interpreted as follows:

• The top node indicates that all traces share MPI Init(), MPI Comm size(), MPI Comm rank()

and MPI Finalize().

• The bottom node signifies that none of the traces share all attributes.

• The middle nodes show that T0 and T2 are different from T1 and T3.

The complete pairwise Jaccard Similarity Matrix (JSM) can easily be computed from

concept lattices. For large-scale executions with thousands of threads, it is imperative

to employ incremental algorithms to construct concept lattices (detailed in Section 3.3.2).

42

Common

Normal

Faulty

Figure 3.5: Leg-
end

End

L1^16

MPI_Finalize

L1^7
L0^9

MPI_Init
MPI_Comm_rank
MPI_Comm_size

Start

Figure 3.6: swapBug

End

L1^16
MPI_Finalize L1^7

MPI_Init
MPI_Comm_rank
MPI_Comm_size

Start

Figure 3.7: dlBug

Figure 3.4 shows the heatmap of the JSM obtained from the concept lattice in Figure 3.3.

DiffTrace uses the JSM to form equivalence classes of traces by hierarchical clustering.

Next, we show how the differences between two hierarchical clusterings from two execu-

tions (faulty vs. normal) reveal which traces have been affected the most by the fault.

3.2.6 Detecting Suspicious Traces via JSMD

JSMnormal[i][j] (JSM f aulty[i][j]) shows the Jaccard similarity score of Ti and Tj from the

normal trace (T′
i and T′

j). As explained earlier, we compute JSMD to detect outlier execu-

tions, where JSMD = |JSM f aulty−JSMnormal |.

We sort the suggestion table based on the B-score similarity metric of two hierarchical

clusterings [25] (cf. Section 3.3.3). A single iteration through the DiffTrace loop (with a

single set of parameters shown as a dashed box in Figure 3.1) may still not detect the

root-cause of a bug. The user can then (1) alter the linkage method employed in comput-

ing the hierarchical clustering (reorder the dendrograms built to achieve the clustering),

(2) alter the FCA attributes, (3) adjust the NLR constants (loops are extracted with realistic

complexity by observing repetitive patterns inside a preallocated buffer), and/or (4) the

front-end filters. This is shown in the iterative loop in Figure 3.1.

43

3.2.7 Evaluation

To evaluate the effectiveness of DiffJSM, we planted two artificial bugs (swapBug and

dlBug) in the code from Figure 3.2 and ran it with 16 processes. swapBug swaps the order

of MPI Send and MPI Recv in rank 5 after the seventh iteration of the loop in line 3 of

oddEvenSort, simulating a potential deadlock. dlBug simulates an actual deadlock in the

same location (rank 5 after the seventh iteration). Upon collection of ParLOT traces from

the execution of the buggy code versions, DiffTrace first decompresses them and filters out

all non-MPI functions. Then two major loops are detected, L0 and L1 (identical to the ones

in Table 3.3), that are supposed to loop 16 times in the even and odd traces, respectively

(except for the first and last traces, which loop just eight times).

After constructing concept lattices and their corresponding JSMs, trace 5 appears as the

trace that got affected the most by the bugs because row 5 (showing the similarity score

of T5 relative to all other traces) (JSMnormal[5][i] for i ∈ [0, 16)) changed the most after the

bug was introduced. The differences between the suggested suspicious trace (T′
s) and its

corresponding normal trace (Ts) is visualized by diffNLR.

3.2.7.1 diffNLR

To highlight the differences in an easy-to-understand manner, DiffTrace visually sep-

arates the common and different blocks of a pair of pre-processed traces via diffNLR, a

graphical visualization of the diff algorithm [76].

diff takes two sequences SA and SB and computes the minimal edit to convert SA to

SB. This algorithm is used in the GNU diff utility to compare two text files and in git for

efficiently keeping track of file changes. Since ParLOT preserves the order of function calls,

each trace Ti is totally ordered. Thus diff can expose the differences of a pair of Ts. diffNLR

aligns common and different blocks of a pair of sequences (e.g., traces) horizontally and

vertically, making it easier for the analyst to see the differences at a glance. For simplicity,

our implementation of gdiff only takes one argument x that denotes the suspicious trace.

diffNLR(x) ≡ diffNLR(Tx, T′
x) where Tx is the trace of thread/process x of a normal

execution and T′
x is the corresponding trace of the faulty execution.

Figure 3.6 shows the diffNLR(5) of swapBug where T5 iterates over the loop [MPI Recv

- MPI Send] 16 times (L1ˆ16) after the MPI initialization while the order swap is well re-

44

flected in T′
5 (L1ˆ7 - L0ˆ9). Both processes seem to terminate fine by executing MPI Finalize().

However, diffNLR(5) of dlBug (Figure 3.7) shows that, while T5 executed MPI Finalize, T′
5

got stuck after executing L1 seven times and never reached MPI Finalize.

This example illustrates how our approach can locate the part of each execution that

was impacted by a fault. Having an understanding of how the application should behave

normally can reduce the number of iterations by picking the right set of parameters sooner.

1 main(argc , argv) {

2 ... // initialization

3 MPI_Init ();

4 MPI_Comm_size ();

5 MPI_Comm_rank(my_rank);

6 ... // Obtain number of local CPUs and GPUs

7 MPI_Reduce(lCPUs , gCPUs , MPI_SUM); // Total # of CPUs

8 MPI_Reduce(lGPUs , gGPUs , MPI_SUM); // Total # of GPUs

9 champSize = CPU_Init ();

10 ... // Memory allocation for storing local and global champions w.r.t. champSize

11 MPI_Barrier ();

12 #pragma omp parallel num threads(lCPUs+1)

13 {rank = omp_get_thread_num ();

14 if (rank != 0) { // worker threads

15 while (cont) {

16 ... // calculate seed

17 local_result = CPU_Exec ();

18 if (local_result < champ[rank]) { // update local champion

19 #pragma omp critical

20 memcpy(champ[rank], local_result);}}

21 } else { // master thread

22 do {

23 ...

24 MPI_AllReduce (); // broadcast the global champion

25 ...

26 MPI_AllReduce (); // broadcast the global champion P_id

27 ...

28 if (my_rank == global_champion_P_id) {

29 #pragma omp critical

30 memcpy(bcast_buffer , champ[rank]);

31 }

32 MPI_Bcast(bcast_buffer); // broadcast the local champion to all nodes

33 } while (no_change_threshold);

34 cont = 0; // signal worker threads to terminate

35 }}

36 if (my_rank == 0) {CPU_Output(champ);}

37 MPI_Finalize ();}

38

39 /* User code for TSP problem */

40 CPU_Init () {/* Read coordinates , calculate distances , initialize champion structure ,

return structure size */}

41 CPU_Exec () {/* Find local champions (TSP tours) */}

42 CPU_Output () {/* Output champion */}

Listing 3.1: ILCS Overview

45

3.3 Algorithms Underlying DiffTrace
3.3.1 Nested Loop Recognition (NLR)

We build NLRs based on the work by Ketterlin and Clauss [60], who use this algorithm

for trace compression, and the work by Kobayashi and MacDougall [62], who propose

a similar bottom-up strategy to build loop nests from traces, replacing each recognized

loop with a new symbol. We adapt these algorithms to function-call traces wherein we

record identical loops at different locations by introducing a single new (made-up) func-

tion ID that represents the entire loop. This process is restarted once the whole trace has

been analyzed for depth-2 loops and so on until a function-ID replacement is performed.

DiffTrace-NLR works by incrementally pushing trace entries (function IDs) onto a stack of

elements (i.e., function IDs representing detected loop structures). Whenever an element

is pushed onto the stack S, the upper elements of the stack are recursively examined for

potential loop detection or loop extensions (Procedure 1).

Reduce(S):
for i : 1 ... 3K do

b = i/3
if Top 3 b-long elements of S are isomorphic then

pop i elements from S
LB = S[b : 1], LC = 3
LS = (LB, LC)
push LS to S
add LB to the Loop Table
Reduce(S)

end
if S[i] is a loop (LS) and S[i − 1 : 1] isomorphic to its loop bodyLB then

LC = LC + 1
pop i − 1 elements from S
Reduce(S)

end
end

Procedure 1: Reduce procedure adapted from the NLR algorithm

We store all distinct loop bodies (LBs) in a hash-table, assigning each a unique ID,

which can be applied as a heuristic to detect loops not only in the current trace but also in

other traces of the same execution. The maximum length of the subsequences to examine

is decided by a fixed K. The complexity of the NLR algorithm is Θ(K2N) where N is the

46

size of the input. While loop detection has been researched in other contexts, its use to

support debugging is believed to be novel.

3.3.2 Concept Lattice Construction

The efficiency of algorithms for concept lattice construction depends on the sparseness

of the formal context [63]. Ganter’s Next Closure algorithm [28] constructs the lattice from

a batch of contexts and requires the whole context to be present in main memory and is,

therefore, inefficient for long HPC traces.

We have implemented Godin’s incremental algorithm [32] to extract attributes (Table

3.8) from each trace (object) and inject them into an initially empty lattice. Notice that our

representation already includes compression of the attributes as (1) either the observed

frequency is recorded, (2) the log10 of the frequency is recorded, or (3) “no frequency”

(presence/absence) of a function call is recorded. These are versatile knobs to adjust for bug-

location and similarity calculation.

Every time a new object with its set of attributes is added to the lattice, an update

procedure minimally modifies/adds/deletes edges and nodes of the lattice. The extracted

attributes are in the form {attr:freq}. attr is either a single entry of the trace NLR or a

consecutive pair of entries. freq is a parameter to adjust the impact of the frequency of

each attr in the concept lattice. The complexity of Godin’s algorithm is O(22K|G|), where

K is an upper bound for the number of attributes (e.g., distinct function calls in the whole

execution) and |G| is the number of objects (e.g., the number of traces).

3.3.3 Hierarchical Clustering, Construction, and Comparison

DiffJSMs provide pair-wise dissimilarity measurements that can be used to combine

traces (forming initial clusters). To obtain outliers (suspicious traces), we form dendro-

grams for which a linkage function is required to measure the distance between sets of

traces. We currently employ SciPy (version 1.3.0. [55]) for these tasks. SciPy provides

a wide range of linkage functions such as single, complete, average, weighted, centroid,

median, and ward.

47

CPU_Exec
CPU_Exec

GOMP_critical_start

memcpy

CPU_Exec

GOMP_critical_start

memcpy

End

GOMP_critical_end
L0^21L0^17

GOMP_critical_end

Start

(a) diffNLR(6.4)

End

MPI_Allreduce
MPI_Allreduce
MPI_Bcast
MPI_Allreduce
MPI_Reduce
MPI_Reduce
MPI_Reduce
MPI_Reduce
MPI_Finalize

MPI_Allreduce
MPI_Allreduce
MPI_Bcast
MPI_Allreduce

MPI_Allreduce

MPI_Bcast

MPI_Allreduce

MPI_Init
MPI_Comm_size
MPI_Comm_rank
MPI_Reduce
MPI_Reduce
MPI_Barrier

Start

(b) diffNLR(4)

End

MPI_Allreduce
MPI_Allreduce
MPI_Bcast
MPI_Allreduce
MPI_Allreduce
MPI_Allreduce

MPI_Bcast
MPI_Allreduce
MPI_Allreduce
MPI_Bcast

MPI_Reduce
MPI_Reduce
MPI_Reduce
MPI_Reduce
CPU_Output
MPI_Finalize

MPI_Allreduce
MPI_Allreduce
MPI_Bcast
MPI_Allreduce
MPI_Allreduce
MPI_Allreduce

MPI_Allreduce
MPI_Allreduce

MPI_Bcast

MPI_Init
MPI_Comm_size
MPI_Comm_rank
MPI_Reduce
MPI_Reduce
CPU_Init
MPI_Barrier
MPI_Allreduce
MPI_Allreduce
MPI_Bcast

Start

(c) diffNLR(5)
Figure 3.8: Three diffNLR outputs

3.3.3.1 Ranking Table

As shown in Figure 3.1, each component of DiffTrace has some tunable parameters and

constants, and the suggested suspicious traces are a function of them. Thus, a metric is

needed to serve as the sorting key of the suspicious traces. Each parameter combination,

in essence, creates a different DiffJSM, giving us “the distance between two hierarchical

clusterings”. Fowlkes et al. [25] proposed a method for comparing two hierarchical clus-

terings by computing their B-score. While we have not evaluated the full relevance of this

idea, our initial experiments show that sorting suspicious traces based on the B-score of

DiffJSMs is effective and brings interesting outliers to attention.

3.4 Case Study: ILCS
ILCS is a scalable framework for running iterative local searches on HPC platforms [12].

Providing serial CPU and/or single-GPU code, ILCS executes this code in parallel between

compute nodes (MPI) and within them (OpenMP and CUDA).

48

To evaluate DiffTrace, we manually injected MPI-level and OMP-level bugs into the

Traveling Salesman Problem (TSP) running on ILCS (Listing 3.1). The injected bugs simu-

late real HPC bugs such as deadlocks. Moreover, we inserted “hidden” faults that do not

crash the program such as violations of critical sections and semantic bugs. The goal was

to see how effectively DiffTrace can analyze the resulting traces and how close it can get to

the root cause of the fault.

We collected ParLOT (main image) traces from the execution of ILCS-TSP with 8 MPI

processes and 4 OpenMP threads per process on the XSEDE-PSC Bridges supercomputer

whose compute nodes have 128 GB of main memory and contain 2 Intel Haswell (E5-2695

v3) CPUs with 14 cores each running at 2.3 - 3.3 GHz. Note that we did not provide any

GPU code to ILCS.

The collected traces (faulty and normal) are fed to DiffTrace. We enabled the MPI,

OpenMP, and custom (ILCS-TSP user code) filters and set the NLR constant K to 10 for all

experiments. The current version of DiffTrace is implemented and built using C++ GCC

5.5.0, Pin 3.8, Python 2.7, and Scipy 1.3.0.

We present the results in the form of ranking tables that show which traces (processes

and threads) DiffTrace considers “suspicious”. Since DiffTrace output is highly dependent

to “parameters”, each row in ranking tables starts with parameters whom the suspicious

traces are the result of.

The linkage method that converts JSMs to flat clustering is “ward” for all of the top

reported suspicious traces that we removed from tables for better readability. Ward link-

age function in SciPy uses Ward variance minimization algorithm to calculate the distance

between newly formed clusters [55]. Furthermore, we show diffNLRs for selected traces.

3.4.1 ILCS-TSP Workflow

The TSP code starts with a random tour and iteratively shortens it using the 2-opt

improvement heuristic [54] until a local minimum is reached. ILCS automatically and

asynchronously distributes unique seed values to each worker thread, runs the TSP code,

reduces the results to find the best solution, and repeats these steps until the termination

criterion is met. It employs two types of threads per node: a master thread (MPI process)

that handles the communication and local work distribution and a set of worker threads

49

(OpenMP threads) that execute the provided TSP code. The master thread forks a worker

thread for each detected CPU core. Each worker thread continually calls CPU Exec() to

evaluate a seed and records the result (lines 14-20). Once the worker threads are running,

the master thread’s primary job is to scan the results of the workers to find the best solution

computed so far (i.e., the local champion). This information is then globally reduced to

determine the current system-wide champion (lines 22-32). ILCS terminates the search

when the quality has not improved over a certain period (lines 33-34).

3.4.2 OpenMP Bug: Unprotected Memory Access

The memory accesses performed by the memcpy calls on lines 20 and 30 are protected

by an OpenMP critical section. Not protecting them results in a data race that might lead

to incorrect final program output. To simulate this scenario, we modified the ILCS source

code to omit the critical section in worker thread 4 of process 6.

Table 3.5 lists the top suspicious traces that DiffTrace finds when injecting this bug.

Each row presents the results for different filters and attributes. For example, the filter

“11.mem.ompcit.cust.0K10” removes all function returns and .plt calls from the traces

and only keeps memory-related calls, OpenMP critical-section functions, and the custom

function “CPU Exec”. The “K10” at the end of filter means that the filtered traces are

converted into an NLR with K=10. The bold numbers in the rightmost column of the table

flag trace 6.4 (i.e., process 6, thread 4) as the trace that was affected the most by the bug.

The corresponding diffNLR(6.4) presented in Figure 3.8a clearly shows that the normal

execution of ILCS (green and blue blocks) protects the memcpy while the buggy execution

(green and red blocks) does not. Here, L0 represents CPU Exec, which is called multiple

times in both the fault-free and the buggy version (the call frequencies are different due to

the asynchronous nature of ILCS).

3.4.3 MPI Bug: Deadlock Caused by Fault in Collective

By forcing process 2 to invoke MPI Allreduce (line 24) with a wrong size, we can inject

a real deadlock. Because the deadlock happens early in the execution, the resulting traces

are very different from their fault-free counterparts. Consequently, DiffTrace marks almost

all processes as suspicious (cf. Table 3.6). Clearly, this is not helpful for debugging. Nev-

ertheless, diffNLR still yields useful information. Since most of the traces are suspicious,

50

we do not know which one the real culprit is and randomly selected trace 4. By looking at

the diffNLR(4) output shown in Figure 3.8b, we immediately see that both the normal and

the buggy trace are identical up to the invocation of MPI Allreduce. This gives the user

the first (correct) hint as to where the problem lies. Beyond this point, the bug-free process

continues to the end of the program (it reaches the MPI Finalize call) whereas the buggy

process does not. The last entry in the buggy trace is a call to MPI Allreduce (the last green

box), indicating that this call never returned, that is, it deadlocked. This provides the user

with the second (correct) hint as to the type of the underlying bug.

3.4.4 MPI Bug: Wrong Collective Operation

By changing the MPI MIN argument to MPI MAX in the MPI Allreduce call on line 24

of Listing 3.1, the semantics of ILCS change. Instead of computing the best answer, the

modified code computes the worst answer. Hence, this code variation terminates but is

likely to yield the wrong result. We injected this bug into process 0.

The first few suspicious processes listed in Table 3.7 are inconclusive. However, the

filters that include MPI all agree that process 5 changed the most. Looking at the cor-

responding diffNLR(5) output in Figure 3.8c makes it clear why process 5 was singled

out. In the buggy run, it executes many more MPI Bcast calls than in the bug-free run

because the frequency in which local “optimums” are produced has changed. Though

this should affect all traces equally, which has reflected in the diffNLR of other traces. We

are presenting these tables and figures to show that DiffTrace can reveal the impact of

silent bugs like the wrong operation. Such data representation via suggested tables and

diffNLRs helps developers to gain insight into the general behavior of the execution. More

accurate results can be obtained by refining the parameters and collecting more profound

traces (e.g., ParLOT(all images)). This would be part of our future work to find the set of

parameters for different classes of bugs to maximize accuracy.

3.5 LULESH2 Examples
Our ultimate goal is to apply DiffTrace to complex HPC codes. As a more complex

example, we have executed the single-cycle LULESH2[58] with 8 MPI processes and 4

OMP threads (system configuration described in §3.4) and collected ParLOT (main image)

51

function calls.

Before bug injection, we analyzed LULESH2 traces and computed some statistics to

gain insight into the general control flow of LULESH2 and also to evaluate DiffTrace’s

performance and effectiveness. Our primary results show that ParLOT instruments and

captures 410 distinct function calls on average per process, and stores them in compressed

trace files of size less than 2.8 KB on average per thread. Upon decompression, each per

process trace file turns into a sequence of 421503 function calls on average. The equivalent

NLR of each trace file reduces the sequence size by a factor of 1.92 and 16.74, for constant

K set to 10 and 50, respectively.

For further evaluation of DiffTrace, we injected a fault into the LULESH source code

so that the process with rank 2 would not invoke the function LagrangeLeapFrog that

is in charge of updating “domain” distances and send/receive MPI messages from other

processes.

Table 3.9 reflects the ID of processes (rightmost column) that DiffTrace’s ranking system

suggests as the most affected traces by the bug. Since the fault in process 2 prevents

other processes from making progress and successfully terminate, all of the process IDs

appeared in the table. The generated diffNLRs clearly showed the point at which each

process stopped making progress.

3.6 Related Work
Three major recent studies have emphasized the need for better debugging tools and

the need to build a community that can share debugging methods and infrastructure: the

DOE report mentioned earlier [34], an NSF workshop [15], and an ASCR report on extreme

heterogeneity [107]. Our key contribution in this paper is a fresh approach to debugging

that (1) incorporates methods to debug across the API-stack by resorting to binary tracing

and thereby being able to “dial into” MPI bugs and/or OpenMP bugs (as shown in the

ILCS case study), (2) makes initial triage of debugging methods possible via function-call

traces, and (3) enables the verification community to cohere around DiffTrace by allowing

other tools to extend our toolchain (they can tap into it at various places).

Many HPC debugging efforts have emphasized the need to highlight dissimilarities

and incorporate progress measures on loops. We now summarize a few of them. Au-

52

tomaDeD [9][64] captures the application’s control flow via Semi Markov Models and

detects outlier executions. PRODOMETER [73] detects loops in AutomaDeD models and

introduces the notion of least progressed tasks by analyzing progress dependency graphs. Diff-

Trace’s DiffNLR method does not (yet) incorporate progress measures; it only computes

changes in loop structure. Prodometer’s methods are ripe for symbiotic incorporation into

DiffTrace. We also plan to incorporate happens-before computation as a progress measure

using FCA-based algorithms by Garg et al. [30, 31]. FCA-based approaches have been

widely used in data mining, machine learning, and information retrieval [52].

In terms of computing differences with previous executions, we draw inspirations

from Zeller’s delta-debugging [116] and De Rose et al.’s relative debugging [86]. The

power of equivalence classes for outlier detection is researched in STAT [3], which merges

stack traces from processes into a prefix tree, looking for equivalence-class outliers. STAT

uses the StackWalker API from Dyninst [72] to gather stack traces and efficiently handles

scaling issues through tree-based overlay networks such as MRnet [87]. D4 [68] detects

concurrency bugs by statically analyzing source-code changes, and DMTracker [29] de-

tects anomalies in data movement. The communication patterns of HPC applications can

be automatically characterized by diffing the communication matrix with common pat-

terns [88] or by detecting repetitive patterns [84]. ScalaTrace [83] captures and compresses

communication traces for later replay. Synoptic [7] is applied to distributed system logs to

find bugs.

3.7 Discussions & Future Work
DiffTrace is the first tool we know of that situates debugging around whole program

diffing, and (1) provides user-selectable front-end filters of function calls to keep; (2) sum-

marizes loops based on state-of-the-art algorithms to detect loop-level behavioral differ-

ences; (3) condenses the loop-summarized traces into concept lattices that are built using

incremental algorithms; (4) and clusters behaviors using hierarchical clustering and ranks

them by similarity to detect and highlight the most salient differences. We deliberately

chose the path of a clean start that addresses missing features in existing tools and missing

collectivism in the debugging community. Our initial assessment of this design is encour-

aging.

53

In our future work we will improve DiffTrace components as follows: (1) Optimizing

them to exploit multi-core CPUs, thus reducing the overall analysis time; (2) Converting

ParLOT traces into Open Trace Format (OTF2) by logically timestamping trace entries to

mine temporal properties of functions such as happened-before [65]; (3) Conducting sys-

tematic bug-injection to see whether concept lattices and loop structures can be used as

elevated features for precise bug classifications via machine learning and neural network

techniques; and (4) Taking up more challenging and real-world examples to evaluate Diff-

Trace against similar tools, and release it to the community.

Acknowledgements: Supported in part by NSF awards CCF 1817073 and 1704715.

54

Table 3.3: NLR of Traces
T0 T1 T2 T3

MPI Init MPI Init MPI Init MPI Init
MPI Comm Rank MPI Comm Rank MPI Comm Rank MPI Comm Rank
MPI Comm Size MPI Comm Size MPI Comm Size MPI Comm Size
L0 ˆ 2 L1 ˆ 4 L0 ˆ 4 L1 ˆ 2
MPI Finalize MPI Finalize MPI Finalize MPI Finalize

Table 3.4: Formal Context of odd/even sort example
MPI Init() MPI Comm Size() MPI Comm Rank() L0 L1 MPI Finalize()

Trace 0 × × × × ×
Trace 1 × × × × ×
Trace 2 × × × × ×
Trace 3 × × × × ×

Table 3.5: Ranking table - OpenMP bug: unprotected shared memory access by thread 4
of process 6

Filter Attributes B-score
Top

Processes
Top

Threads
11.plt.mem.cust.0K10 doub.noFreq 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
11.plt.mem.cust.0K10 doub.log10 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
01.plt.mem.cust.0K10 doub.noFreq 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
01.plt.mem.cust.0K10 doub.log10 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2

01.mem.ompcrit.cust.0K10 sing.log10 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
01.mem.ompcrit.cust.0K10 sing.noFreq 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
11.mem.ompcrit.cust.0K10 sing.log10 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
11.mem.ompcrit.cust.0K10 sing.noFreq 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1

11.plt.mem.cust.0K10 doub.actual 0.273 7 6.4, 2.4, 3.4, 4.2, 4.4
01.plt.mem.cust.0K10 doub.actual 0.273 7 6.4, 2.4, 3.4, 4.2, 4.4

Table 3.6: Ranking table - MPI bug: wrong collective size in process 2

Filter Attributes B-score
Top

Processes
Top

Threads
11.mpicol.cust.0K10 sing.log10 0.439 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpicol.cust.0K10 sing.noFreq 0.439 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4

11.mpi.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpi.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

11.mpiall.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpiall.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpicol.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpicol.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

11.mpi.cust.0K10 sing.log10 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpi.cust.0K10 sing.noFreq 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4

11.mpiall.cust.0K10 sing.log10 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpiall.cust.0K10 sing.noFreq 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4

11.mpi.cust.0K10 doub.noFreq 0.543 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpi.cust.0K10 doub.actual 0.543 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

55

Table 3.7: Ranking Table - MPI-Bug: Wrong Collective Operation ,Injected to Process 0

Filter Attributes B-score
Top

Processes
Top

Threads
01.plt.cust.0K10 doub.log10 0.271 2 6.2, 7.3, 2.2, 5.2, 5.3
11.plt.cust.0K10 doub.log10 0.271 2 6.2, 7.3, 2.2, 5.2, 5.3
01.plt.cust.0K10 sing.actual 0.276 1 3.1, 1.4, 6.4, 3.4
11.plt.cust.0K10 sing.actual 0.276 1 3.1, 1.4, 6.4, 3.4
01.plt.cust.0K10 doub.noFreq 0.285 2 6.2, 7.3, 2.2, 5.2, 5.3
11.plt.cust.0K10 doub.noFreq 0.285 2 6.2, 7.3, 2.2, 5.2, 5.3
01.plt.cust.0K10 sing.log10 0.292 1, 4, 5 3.1, 4.3
11.plt.cust.0K10 sing.log10 0.292 1, 4, 5 3.1, 4.3

01.mpicol.cust.0K10 sing.actual 0.312 5 3.2, 6.4, 5.4, 4.2
11.mpicol.cust.0K10 sing.actual 0.312 5 3.2, 6.4, 5.4, 4.2

11.mpi.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
11.mpiall.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
01.mpiall.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2

01.mpi.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
11.mpi.cust.0K10 sing.actual 0.371 5 3.2, 6.4, 5.4, 4.2

11.mpiall.cust.0K10 sing.actual 0.371 5 3.2, 6.4, 5.4, 4.2

Table 3.8: Attributes mined from traces
Attributes
{attr:freq}

attr freq

Single
each entry
of the trace

Actual observed frequency

Log10 log10 of the observed frequency

Double
each pair of
consecutive entries noFreq no frequency

Table 3.9: Ranking Table for LULESH
Filter Attributes B-score Top Processes
11.1K10 sing.noFreq 0.295 2 , 3 , 4 , 5 , 6 , 7
01.1K10 sing.noFreq 0.354 0 , 1 , 2 , 3 , 4 , 5
01.1K10 sing.actual 0.383 2 , 3 , 4 , 5 , 6 , 7
11.1K10 sing.noFreq 0.408 2 , 3 , 4 , 5 , 6 , 7
11.1K10 sing.noFreq 0.408 2 , 3 , 4 , 5 , 6 , 7
01.1K10 doub.noFreq 0.433 4 , 5 , 6
01.1K10 doub.noFreq 0.433 4 , 5 , 6
11.1K10 doub.noFreq 0.433 5 , 1 , 6
01.1K10 doub.noFreq 0.455 1 , 2 , 3 , 4 , 7
11.1K10 doub.noFreq 0.458 5 , 1 , 6
11.1K10 doub.noFreq 0.458 4 , 5 , 6 , 7
01.1K10 sing.log10 0.459 1 , 2 , 3 , 4 , 5 , 6
01.1K10 doub.noFreq 0.472 0 , 1 , 2 , 3 , 4 , 5
01.1K10 sing.log10 0.475 1 , 3 , 4 , 5 , 6 , 7
01.1K10 sing.log10 0.478 1 , 2 , 3 , 4 , 5 , 6
01.1K10 sing.log10 0.478 1 , 2 , 3 , 4 , 5 , 6

CHAPTER 4

AUTOMATED CONCURRENCY TESTING

FRAMEWORK FOR GO

This chapter is based on the work submitted to the 2021 IEEE International Symposium

on Workload Characterization (IISWC). We present GOAT, a combined static and dynamic

concurrency testing and analysis tool that facilitate the process of debugging for real-world

programs. Key ideas in GOAT include 1) automated dynamic tracing to capture the behav-

ior of concurrency primitives, 2) systematic schedule space exploration to accelerate the

bug occurance and 3) deadlock detection with supplementary visualizations and reports.

We also propose a set of coverage requirements that characeterize the dynamic behavior of

concurrency primitives and provide metrics to measure the quality of tests. Our evaluation

on 68 curated real-world bug scenarios demonstrates that GoAT is significantly effective

in detecting rare bugs, and its schedule perturbation method based on schedule yielding

detects these bugs with less than three yields. These results together with the ease of

deploying GoAT on real-world Go programs holds significant promise in field-debugging

of Go programs.

4.1 Introduction
Go [46] is a statically typed language initially developed by Google. It employs channel-

based Hoare’s Communicating Sequential Processes (CSP) [38] semantics in its core and

provides a productivity-enhancing environment for concurrent programming. Go enjoys

accelerating acceptance in a wide variety of communities including container software

systems [51, 71], distributed key-value databases [41, 97], and web server libraries [42].

It involves shared memory, message passing, non-deterministic message reception and

selection, dynamic process creation, and programming styles that tend to create thou-

sands of goroutines (i.e., application-level threads) and discard them to be garbage collected

when they reach their final state. The combination of these features is well known for

57

Traverse
AST

Conc. Usage
Model M

Yield Handlers
Injection

Deadlock/Leak
Detection

Coverage
Measurement

 ECT

GoAT Runtime

GoAT API

Static

Program P
Source Files

Program P
Instrumented

Coverage
Requirements

Dynamic

Concurrency Tracing
Terminate

Yes

No

Coverage Offline Analysis

Figure 4.1: GOAT Overview

Go’s popularity, yet they also make Go challenging to debug. Our work is especially

relevant considering that there are no widely practical tools for debugging concurrent

Go; even well-curated concurrency bug benchmark suites are only just now beginning

to appear [106, 114].

In general, concurrent bugs are notoriously difficult to find and reproduce due to the

non-deterministic choices that the scheduler makes during execution. In Go, constructs

like select and buffered channels entangle the process of debugging by introducing extra

randomness to the dynamic behavior of the program. Recent static [66, 67, 82, 93] and

dynamic [20, 95, 96, 108, 117] techniques have been proposed to address these challenges.

GoBench [114] gathers a collection of real concurrency bugs (GoReal) and simplified bug

kernels (GoKer) from top 9 open-source projects written in Go and evaluated the effectiv-

ness such techniques in detecting the bug collection. Although static methods are proved

to be rigorously effective in detecting flaws in small programs, they are not practical for

realistic programs and often produce false positives. On the other hand, dynamic analysis

approaches cover a more significant subset of real-world programs by constructing and

analyzing an execution model. However, they focus on a specific class of bugs based on

the symptom or cause of the bug. Also, for large codebases with thousands of LOC, it is

non-trivial to capture an accurate dynamic execution model using source instrumentation

or source-to-source translation. Furthermore, our experiments (section 4.4) observe that

some buggy programs take more than 1,000 runs under different schedules before the bug

is hit. Concurrent testing methods [5] are proposed to complement static and dynamic

approaches in tackling challenges of concurrent debugging. To the best of our knowledge,

there exist no such testing methods applicable to Go.

We implemented GOAT (Go Analysis and Testing), a debugging framework for con-

current Go applications to address this lack. GOAT (figure 4.1) combines static and dy-

namic approaches to automatically analyze the behavior of concurrent components and

58

facilitate the process of testing and debugging Go applications. Several classic ideas from

literature are combined with novel ones to support modern concepts of Go in GOAT,

which pursues three primary objectives:

Objective 1: Accurate Dynamic Execution Modeling— In order to study the behavior of

concurrent components and track the state of the program during execution, a dynamic

execution model has to be constructed and compared against a predefined model (e.g.,

formally defined specifications or the developer’s mental representation of the program).

It is crucial for debuggers and software analysis tools to construct their execution models

as close as possible to the actual program execution context. Since a bug might occur

at various levels of abstraction, whole-program dynamic tracing provides a practical and

uniform way to track multiple facets of the program during execution [99]. We have

enhanced the built-in tracing mechanism of Go [101] to capture the dynamic behavior of

concurrency primitives in the form of a sequence of events, namely execution concurrency trace

or ECT. Each event in ECT represents an action that corresponds to exactly one statement in

the source code. An ECT provides a detailed model of how a concurrent program behaves

dynamically and assists debugging procedures (e.g., bug detection, root-cause analysis,

execution visualization). Our experiments show that by replaying the program’s ECT,

GOAT detects all blocking bugs of GoKer [114] many of which are undetected by existing

debugging tools.

Objective 2: Systematic Exploration of Schedule-Space— Since the scheduler’s non-deterministic

behavior is the primary reason for Heisenbugs (i.e., errors that are uncommon to occur and

hard to reproduce), these bugs may not manifest during conventional testing. By adopting

ideas from systematic concurrency testing approaches [10, 13, 21–24, 39, 56, 75, 103, 113, 115],

we perturb the native scheduler of Go to explore the unconventional but feasible execution

interleaving. First, we statically identify the source location of concurrency primitive

usages in a given program. We then inject handlers of context-switching calls around

these locations to manage schedule perturbation. At its simplest form, handlers randomly

(with a certain probablity and within a bound) decide if the current goroutine should

continue executing or yield to other goroutines to execute first. Such yields change the

blocking behavior of the program within the space of feasible states and exercise untested

interleavings, consequently heighten the propensity for bug detection. The results of our

59

experiments indicate that just a few random schedule perturbations can accelerate the

exposure of rare bugs.

Objective 3: Testing Quality Measurement— A test suite’s thoroughness is often judged

by the coverage of certain aspects of the software, such as its source-code statements (a

higher statement coverage indicates more thorough testing). In the context of concurrent

software, exisiting coverage metrics [21, 39, 105, 112] characterize (quantify) the behavior

of concurrency primitives which enables the quality measurement of schedule-space ex-

ploration. Such characterizations involve defining an initial set of requirements and a

method for assessing whether or not those requirements are met during testing. Since

Go combines traditional synchronization and serialization primitives (mutex, conditional

variables) with message-passing and introduces new concepts such as select-case (non-

deterministic communication and synchronization), new coverage requirements are re-

quired to characterize the behavior of Go concurrency. Using the GOAT’s infrastructure,

we studied the underlying causes of bugs in GoKer benchmark [114] and proposed a set

of coverage requirements that 1) coherently characterize the dynamic behavior of con-

currency primitives under various scheduling scenarios and 2) enable measurement of

schedule-space exploration until reaching a threshold, or exposing the bug. By analyz-

ing the test’s ECT, we can identify if coverage requirements are met during testing. We

demonstrate that our novel coverage metric is effective in measuring the schedule-space

exploration progress.

To summarize, here are our main contributions:

• We introduce GOAT, a testing and analysis framework that facilitates whole-program

trace collection (via an enhancement to the standard tracer package) and knowledge

discovery about the program’s dynamic behavior.

• We show the effectiveness of controlled preemptions for concurrency bug exposure

in the context of a real-world language

• We propose a set of coverage requirements that characterize the dynamic behavior of

concurrency primitives, enabling measurement of quality and progress of schedule-

space exploration.

60

1 package main

2 import "sync"

3

4 type Container struct{

5 sync.Mutex

6 stop chan struct{}

7 }

8

9 func main() {

10 container := &Container{

11 stop:make(chan

struct{})}↪→

12 go Monitor(container)

13 go StatusChange(container)

14 }

15 func Monitor(cnt *Container){

16 for{

17 select{

18 case <- cnt.stop:

19 return

20 default:

21 cnt.Lock()

22 cnt.Unlock()

23 }}}

24 func StatusChange(cnt

*Container){↪→
25 cnt.Lock()

26 defer cnt.Unlock()

27 cnt.stop <- struct{}{}

28 }

Successful

select
lock
unlock

lock
send

select
recv
ret

unlock

Monitor Status
Change

select
lock

unlock

send

select
recv
ret

lock
unlock

Monitor Status
Change

Leak

block

block

block

Unblock

Listing 1: Simplified version of bug moby28462

The rest of this paper is as follows: Section 4.2 discusses the fundamentals about con-

currency debugging in Go and ideas behind GOAT. Section 4.3 illustreate the design and

implementation of GOAT’s components. The evaluation of GOAT on GoKer bug bench-

mark is illustrated in section 4.4. Section 4.5 discusses the related work and finally, section

4.6 summarizes and concludes.

4.2 Background

4.2.1 Go Concurrency

Go introduces a new concurrency model, mixing shared-memory features of languages

like Java/C/C++ and message-passing concepts such as Erlang’s, with an ad-hoc sched-

uler that orchestrates Go’s concurrent components interactions while shielding the user

from many low-level aspects of the runtime. The language is equipped with a rich vocab-

ulary of serialization features to facilitate the memory model constraints [49]; they include

synchronous and asynchronous communication, memory protection, and barriers for effi-

cient synchronization:

• Goroutines are functions that execute concurrently on logical processors having their

own stack.

• Channels are typed conduits through which goroutines communicate. Channels are

unbuffered by default, providing synchronous (rendezvous) or asynchronous (via

buffered channels) messaging between goroutines.

61

• Synchronization features such as (RW)mutex, waitGroup, conditional variables, select,

and context are included in the language to provide more and flexible synchroniza-

tion, data access serialization, memory protection, and error handling.

• Scheduler maintains goroutines in FIFO queues and binds them on OS threads to

execute on processing cores.

This design facilitates the construction of data flow models that efficiently utilize mul-

tiple CPU cores and encourages developers to share memory through communication for

safe and straightforward concurrency and parallelism. This rich mixture of features has,

unfortunately, greatly exacerbated the complexity of debugging. In fact, the popularity

of Go has outpaced its debugging support [40, 106, 114]. There are some encouraging

developments in support of debugging, such as a data race checker [108] that has now

become a standard feature of Go and has helped catch many a bug. However, the support

for blocking bugs such as deadlocks and Go-specific bug-hunting support for Go idioms

(e.g., misuse of channels and locks) remain insufficiently addressed.

Listing 1 shows a simplified version of a reported bug in Docker [43]. An instance of

the Container type (lines 4-7) is created in the main function (lines 10-11). In line 12, a

goroutine is spawned to execute function Monitor that continuously checks the container

status and returns once it receives from the container’s channel (lines 18-19). The default

case of the select statement (line 20) allows Monitor to continue monitoring without

getting blocked on the channel receive (line 18). Concurrent to the main and Monitor

goroutines, another goroutine is created in line 13 to execute function StatusChange which

changes the status of the container by sending to the container’s channel. The container’s

lock is released after the send action completes and function returns (defer statement in

line 26).

Native execution of this program terminates successfully without issuing any error or

warning. Based on the Go specification and memory model, there is no constraint on

the goroutines spawned from the main function to join back before the main goroutine1

terminates. A deadlock detector within the runtime periodically checks that the scheduler

queues of all runnable goroutines never become empty until the main goroutine terminates.

1In the remainder of the paper, we use main function and main goroutine interchangeably.

62

In other words, the runtime throws a deadlock exception when the main goroutine is

blocked, and no other goroutine is in the queue to execute (i.e. global deadlock). Since

there is no blocking instruction in the main goroutine in listing 1, the program terminates

successfully regardless of other goroutines’ statuses. However, this program suffers from

a common bug in concurrent Go where one or more goroutines leak (i.e., partial deadlock)

from the execution (i.e., never reach their end states).

The right side of the listing displays a successful run and a leak situation of the pro-

gram. In the leak situation, first, the Monitor goroutine executes the select statement and,

based on the available cases, picks the default case to execute. Right before the execution of

mutex lock (line 21), the scheduler context-switches and the StatusChange goroutine starts

its execution through which it holds the lock and blocks on sending to the channel (line 27)

since there is no receiver on that channel. Upon blocking on send, the scheduler transfers

back the control to the Monitor goroutine that tends to acquire the mutex, but because the

mutex is already held by StatusChange, the Monitor goroutine also blocks. The circular

wait between the container mutex and channel prevents both spawned goroutines from

reaching their end states and leaves the program in an unnoticed deadlock situation.

4.2.2 Concurrency Bugs in Go

Based on a proposed bug taxonomy for Go [106], bugs are categorized separately based

on their causes (shared-memory vs. message-passing) and symptoms (blocking vs. non-

blocking). Blocking bugs historically refer to situations where one or more processing units

(e.g., goroutines) are blocked, waiting for an external signal to resume (e.g., leak situation

in listing 1. The observed causes of such blocking flaws in the context of Go are as follows:

• Resource deadlocks: Go inherits resource deadlocks from multithreaded languages like

Java and C/Pthreads where goroutines are trapped in a circular wait for the resource

(e.g., mutex) that is held by other goroutines.

• Communication deadlocks: Synchronized (unbuffered) channels transmit values from

one goroutine to another in a rendezvous fashion. The sender (or receiver) blocks

until the receiver (or sender) is ready to receive (send). Misuse of channel operations

might result in one or more goroutines waiting for a sender/receiver to unblock them

forever.

63

• Mixed deadlocks: The leak situation in listing 1 is the example of such deadlocks where

one goroutine is blocked on acquiring a resource that is held by another goroutine

which is blocked on communication.

Similar to other concurrent languages, Go has non-blocking bugs such as data races

and atomicity violations while introducing new bug idioms due to its new concepts such

as anonymous functions [106]. This work focuses on blocking bugs (i.e., partial and global

deadlocks).

In addition to the non-deterministic nature of concurrent languages caused by the

scheduler and interaction between concurrent components, Go introduces some level of

non-determinism at the application level. The select-case statement (similar to switch-case)

allows the goroutine to wait on multiple channel operations. The runtime picks one case

pseudo-randomly among available cases (i.e., channel sends and receives that are ready to

execute without blocking). If none of the cases are ready, the executing goroutine is blocked

unless there is a default case. The default case makes the select non-blocking and prevents

the goroutine from waiting for unavailable communications. Such random behavior ex-

pands the interleaving space, and it grows exponentially when nested selects are employed

in conjunction with nested loops. As a result, tracing the cause of a program’s misbehaved

execution becomes increasingly tricky. Our observations (section 4.4) demonstrate that

select statements are involved at the center of many rare bugs.

4.2.3 Accelerating Bug Exposure

Blocking bugs are primarily caused by the non-deterministic decisions that the sched-

uler makes. Such bugs may not manifest themselves in conventional testing and are dif-

ficult to reproduce. Figure 4.2 displays the histogram of 68 blocking bug kernels grouped

by the number of trials that GOAT takes to detect them. Approximately 30% of bugs

required more than one execution to happen and be detected by GOAT2. stress testing

is a common way to detect such rare bugs by exercising the scheduler and examine the

program’s behavior in many executions. However, such testing is inefficient because

some interleavings might get tested repeatedly while other feasible interleavings remain

2The figure and numbers are obtained from trials of GOAT on native execution of bug kernels without
any randomization (i.e., D = 0).

64

untested. It has been empirically demonstrated that a small amount of randomness in each

test execution can drastically reduce the number of iterations needed to find concurrency

bugs [23, 103]. For instance, forcing context-switches before synchronization/serialization

operations in concurrent programs increases the probability of finding rare concurrent

bugs [10]. In listing 1, a rare context-switch after the select statement in line 17 causes the

lock operation on mutex m in line 21 of goroutine Monitor to block goroutine StatusChange

on locking m in line 25 and causing a deadlock. Concurrency primitive usages (e.g.,

channel send/recv, mutex lock/unlock, select) are the critical points in the program because

their behavior directly impacts the blocking behavior of Go programs. In GOAT, we

statically identify such critical points and inject yield handlers before each concurrency

primitive usage. During execution, the handlers randomly decide if the current goroutine

should yield to other goroutines to execute. Results in section 4.4 show that such simple

yields are effective in detecting rare bugs.

4.2.4 Testing Coverage Analysis

To demonstrate that testing has been thorough, coverage metrics are defined to measure

the progress of tests and specify testing termination conditions. Coverage metric for the

set of testing executions T is a set of requirements R that should get covered during testing

iterations. We say requirement Ri ∈ R is covered during testing iteration tj ∈ T if we

can correlate an action during execution of tj to Ri. For example, in statement coverage,

which is a widely-used metric in testing sequential software, R is the set of source locations

(file and line numbers) in the target program. Ri is covered by test execution t if the

statement at location Ri is executed in t. The coverage percentage of a test T is the ratio

of the requirements covered by at least one execution over the number of all requirements

(|R|).

Concurrent software testing frameworks perform testing iterations to explore the sched-

ule space and expose flaws. Depending on the class of target bug, different coverage

metrics are proposed to quantify the quality of search space exploration. Synchronization

coverage metrics such as blocking-blocked [21], blocked-pair-follows [105] and synchronization-

pair [39] defined requirements to cover during testing for exposing blocking bugs (e.g.

deadlocks). For example, the synchronization coverage model in [21] defines blocking and

65

0

10

20

30

40

50

[1] [2-10) [10-100) [100-1000)

Figure 4.2: Distribution of number of trials
for GOAT (D0) to detect 68 blocking bugs in
GoKer [114]

G0 (main)

Created at: -
Holds:

Blocks on:

Last event: GoSched

G1 (Monitor)

Created at: moby28462:12
Holds:

Blocks on:
 (M1)lock@moby28462:21

Last event: Block-Sync

G2 (StatusChange)

Created at: moby28462:13
Holds:
 (M1)lock@moby28462:21
Blocks on:
 (Ch1)send@moby28462:26

Last event: Block-send

Figure 4.3: Goroutine tree of the leak situa-
tion in listing 1

blocked requirements per each synchronized block (i.e. mutually exclusive section of the

code that is protected by a lock). The purpose of this requirement is to check if a test can

report when there is a lock contention for two or more threads entering the synchronized

block. That is, a thread is either blocked from entering the synchronization block or blocking

other threads from entering by holding the lock.

The existing concurrency coverage metrics are primarily in the context of Java and

C/Pthreads. They are not necessarily applicable to languages like Go as such languages

have different concurrency primitives and semantics. Novel coverage metrics are required

to enable the quantification of interleaving space exploration. Bron et al.,[8] enumerates

four major characteristics for coverage metrics to gain acceptance:

1. Static model: A static model of requirements from the given program should be con-

structed by instrumenting the source code. The model should be well-understood

by the developer or tester before execution. The model should maintain covered

requirements during testing executions.

2. Coverable and measurable requirements: The absolute majority of requirements

should be realistic enough to be coverable during testing. For a few that are not cover-

able (due to program semantics) or not measurable (because of technical limitations),

the developer should be aware of the reason.

3. Actions for uncovered requirements: After testing terminates, every uncovered

requirement should yield an action (e.g., extending testing iterations or removing

dead code from the program, thus removing uncoverable requirements)

66

4. Coverage satisfaction: Some action should be taken upon reaching a threshold of

coverage percentage (e.g., testing phase termination when reaching 100% statement

coverage)

Defining a new coverage metric to satisfy the above characteristics requires an accurate

and proper mental model of target bugs. Using the GOAT’s infrastructure, we studied

the underlying causes of many bugs, including GoKer benchmark [114] and propose a

set of coverage requirements that enables extensive analysis of dynamic behavior of con-

currency primitives under various scheduling scenarios. In section 4.3.3, we describe our

proposed coverage metric for testing concurrent Go, which are extensible to all concurrent

languages.

4.3 Design and Implementation
4.3.1 Overview

Figure 4.1 displays the overview of GOAT. Given a program P (i.e., a set of Go source

files with a main function), GOAT automatically instruments P and constructs static and

dynamic models to facilitate the investigation of non-deterministic interactions between con-

current components (i.e., concurrent behavior) of P, and achieve objectives introduced in

section 4.1.

Static Analysis: (section 4.3.2)— GOAT statically constructs a model M which is a table

of source locations (files and line numbers) associated with concurrency primitive usages

in P source files. The primary use of M is to identify locations in P as potential points

for manipulating the schedule to explore possible scenarios and accelerate the discovery

of rare bugs. Yield handlers are injected before each entry in M to decide if the following

concurrency action (e.g., message send or mutex lock) should perform or yield to other

goroutines. Such yields effectively perturb the scheduler and execute feasible but rarely

taken interleavings of P.

Coverage Requirements: (section 4.3.3)— Forcing the schedule perturbation is effective

for exploring the feasible interleaving space until the bug is hit. However, a metric is

required to evaluate the quality of interleaving space exploration and measure the progress

until reaching a threshold. Following the tenets of effective coverage metrics, we employ

M to emulate the possible behavior of concurrent components of P and define a set of

67

coverage requirements as indicators for quality and progress of schedule space exploration.

The requirements are defined so that, during testing, uncovered requirements demands

the user to fix the bug or remove the dead code.

Dynamic Analysis: (section 4.3.4)— To gain insight into the concurrent behavior of P and

measure the covered requirements, we equipped GOAT with a dynamic tracing mech-

anism, which is an extension to the Go standard tracer package [33]. When tracing is

enabled, an execution concurrency trace (ECT) file is generated once the execution of P

terminates (e.g., successfully exits, fails, times out). ECT is a totally ordered sequence

of events that contain information about the dynamic behavior concurrent components,

enabling offline analysis of P’s execution.

Offline Analysis: (section 4.3.5)— In offline, GOAT first separates the application-level

events of ECT from the underlying runtime system of Go. Then, it constructs a goroutine

tree from application-level goroutines to check if any goroutine has leaked/blocked (i.e.,

did not reach its final state) after the execution termination. Additionally, GOAT maintains

a global goroutine tree for P and maps goroutines from run to run to accumulate the cov-

ered requirements from each execution of P. As soon as a bug is detected or the coverage

exceeds a threshold, GOAT stops running and produces reports for manual analysis by the

user.

4.3.2 Static Analysis

4.3.2.1 Concurrency Usage Model

GOAT statically constructs a model M from the usage of concurrency primitives in

P files which enables uniform analysis during testing iterations. M is a table of source

locations (files and line numbers) associated with concurrency usages (CU). We define CU

as a triple of (f , l, k) where f is the file name, l is the line number, and k is the concurrency

primitive used in the code location. k ∈ Channel ∪ Sync ∪ Go where:

• Channel = {send, receive, close}

• Sync = {lock, unlock, wait, add, done, signal, broadcast}

• Go = {go, select, range}

68

GOAT constructs M by traversing the abstract syntax tree (AST) for each file in P using

the Go AST package [47]. The first column of table 4.3 shows the CU locations extracted

from program in listing 1.

4.3.2.2 Source Instrumentation

We employ M entries to instrument P with tracing and schedule perturbation mecha-

nisms. First, we traverse the AST of P and inject three statements (i.e., AST nodes) to the

beginning of P’s main function to enable end-to-end tracing:

• goat done := goat.Start() initializes GOAT, enables tracing, and returns a chan-

nel as a conduit between application space and GOAT.

• go goat.Watch(goat done) spawns a new goroutine as a watchdog for checking the

liveness of the program (in case of global deadlock or infinite loop). The watchdog

goroutine either receives from goat done and sends back an ack signal or timeouts

(default: 30 seconds). Then it stops tracing, flushing the trace buffer, and terminates.

• defer goat.Stop(goat done) sends a value to the watcher goroutine after main

returns and signals that the program is finished. Then GOAT waits to receive the

signal from the watcher, then stops tracing and terminates.

Moreover, we inject goat.handler() statements before each CU in M to manipulate

the native scheduler around concurrency primitve usages. goat.handler() is a function

invocation that randomly calls runtime.GoSched() within a bound D to preempt the

processing core from current goroutine and push the goroutine to the back of the global

queue of runnable goroutines. When D = 0, GOAT does not perturb the scheduler and

lets P to execute natively. For any D > 0, GOAT manipulates application-level goroutines

from their regular execution D times. Our experiments (section 4.4) demonstrate that the

optimum value for D is not larger than 3, showing that even a small number of yields is

effective in exposing the bug (as also shown in [10]).

4.3.3 Coverage Requirements

Based on our investigations from the execution of Go applications and bug kernels,

we emulate the possible behavior of concurrent components by defining a set of coverage

requirements (summarized in table 4.1):

69

• Req1 (Send/Recv): {blocked, unblocking, NOP} – Goroutine G1 either is blocked

on a channel send (receive) if the receiver (sender) goroutine G2 is not ready, or is

unblocking the waiting receiver (sender) goroutine G2. A channel send or receive

might also be neither blocked nor unblocking (NOP) for buffered channels.

• Req2 (Select-Case): {blocked, unblocking, NOP} × {casei} – cases of select state-

ments are channel sends and recives (or default case for non-blocking selects). For all

select statements that has no default case, we obtain the cases of each select statement

at runtime and maintain an instance of requirement Req1 per case.

• Req3 (Lock): {blocked, blocking} – Goroutine Gi either is blocked when locking a

mutex because another goroutine has locked the mutex or is blocking other goroutines

from acquiring the mutex lock.

• Req4 (Unblocking): {unblocking, NOP} – The goroutine that is performing one of the

unblocking actions such as channel close, mutex unlock, conditional variable signal

and broadcast, waitGroup done, and non-blocking select case (send or receive) either

unblocks one or more blocked goroutines or has no effect (NOP).

• Req5-Go: {NOP} – We emit a NOP action for each goroutine creation to indicate its

coverage during testing.

With the help of GOAT’s infrastructure, our implemntation of the proposed require-

ments satisfy the characteristics of an “acceptable” coverage metric because:

1. A static model M from program P is obtained by identifying its CU points. M is easy

to understand by developers and reflects the concurrent behavior of P.

2. The defined requirements are measurable by analyzing the test’s ECT. A global data

structure maintains the covered requirements by each t ∈ T .

3. Upon completion of T iterations, the uncovered requirements imply some meaningful

information about the behavior of P. For example, if a send is always performing as

unblocking and never as blocked, it means that the receiver always performs receive

before the sender reaches its send instruction. In other words, the receive action

always happen-before send action. This communication pattern might be part of P’s

70

semantics and matches the developer’s expectations (e.g., a set of goroutines are

listening on a channel to perform non-frequent requests). Otherwise, the uncovered

requirement “send-blocked” reflects a bug or flaw in the program.

4. Since GOAT can detect occurred blocking bugs and maintain a global coverage model,

T iterations terminate either by detecting a bug or reaching a percentage threshold.

4.3.4 Dynamic Concurrency Tracing

The standard execution tracer package [33, 48] provides dynamic tracing for the con-

struction of execution models from the interactions of processors, OS threads, goroutines,

the scheduler, and the garbage collection mechanism. The tracing mechanism is compiled

into all programs always through the runtime and is enabled on demand to study perfro-

mance bottlenecks through visualizers like pprof [89]. The alphabet of trace events is total of

49 events [50], categorized and summarized in table 4.2. Although the event vocabulary is

rich enough to model comprehensive goroutine latency and blocking behavior accurately,

the vocabulary lacks concurrency primitive usage events for the construction of concur-

rency models. We enrich the standard tracing mechanism with 14 additional events [101]

to enable the production of dynamic models from the program’s concurrency behavior:

• Channel: For each channel operation (make, send, receive, close), ECT includes an

event with a unique id assigned to each channel.

• (RW)Mutex, WaitGroup & Conditional Variables: Similar to channels, we assign a

unique id to each concurrency object and emit an event for each of their operations

(lock, unlock, rlock, runlock, add, wait, signal, broadcast).

• Select & Schedule: The scheduler and the select structure introduce non-determinism

to the execution. We keep track of the decisions made by the scheduler and select

statements to obtain an accurate decision path.

We call the output of enhanced tracer execution concurrency trace (ECT). ECT is a totally

ordered sequence of events in which the order is approximated through a central clock

with nanosecond precision. ECT also contains the call-stack for each event, enabling a

direct mapping of events to source-line numbers. For each blocking operation (channels

sends/recvs, mutex locks, waitGroup/conditional variable wait and select (when none of

71

the cases are available)), ECT captures a pair of pre-operation and post-operation events

to distinguish between the request for action and completion of action. Hence, ECT is espe-

cially effective for debugging because it enables modeling the blocking state of concurrent

components at any given step of program execution. The enhanced dynamic tracing also

enables the measurement of coverage requirements in offline (section 4.3.5).

4.3.5 Offline Analysis

In the lifetime of Go programs’ executions, the runtime system creates new goroutines

or pick from the pool of dead goroutines to perform various tasks such as bootstrapping

the program, garbage marking and sweeping, and tracing. GOAT also adds an extra

goroutine to watch the program execution in case of the main goroutine blockage. These

goroutines are captured during tracing, but our focus is on the goroutines created from

within the application. The distinguishment between runtime goroutines and application

goroutines is essential to define the boundaries of the application and separate them from

the underlying system. We say a goroutine is an application-level goroutine if it is the main

goroutine (that executes the main function) or it has all of the following conditions: 1) its

ancestor is the main goroutine, 2) it is not a Go runtime system goroutine, and 3) it is not

a tracer goroutine. These conditions are assessed for every captured goroutine in ECT by

checking the call stack of their corresponding GoCreate event.

GOAT constructs a goroutine tree (figure 4.4) of application-level goroutines from the

generated ECT. Nodes in the goroutine tree represent a goroutine, and directed edges

denote parent-child relationships in which the child is created from a go statement that

the parent executes. Each node of the tree contains the entire sequence of events that the

goroutine executed, information about the goroutine’s creation site, the resources it holds

at each execution point, and the final executed event right before the program termination.

GOAT analyzes this collection of information to check whether any goroutine leaked after

termination and whether the coverage requirements are covered.

4.3.5.1 Deadlock Detection

When tracing is enabled, every application goroutine invokes the tracer to capture

GoEnd before finishing its execution. Before the main function returns, the main goroutine

hands over the control to the root goroutine to finalize the program termination. This

72

Table 4.1: Coverge requirements defined for concurrent Go
Coverage Requirement TypesCoverage

Requirements
Concurrent

Action Blocked Unblocking Blocking NOP
SEND * * *

Req. 1: Send/Recv
RECV * * *
CASEi (SEND) * * *

Req. 2: Select-Case
CASEi (RECV) * * *

Req. 3: Lock LOCK * *
CLOSE * *
UNLOCK * *
SIGNAL * *
BRDCST * *

Req. 4: Unblocking

NB-SELECT * *
Req. 5: Go Go *

Table 4.2: Event categories by the Go execution tracer
Category Description
Process Indication of process/thread start and stop
GC/Mem Garbage collection and memory operation events
Goroutine Goroutines events: create, block, start, stop, end, etc.
Syscall Interactions with system calls
Users User annotated regions and tasks (for bounded tracing)
Misc System related events like futile wakeup or timers

Table 4.3: Concurrency Usages and coverage requirements of program in listing1
CU of list. 1 Covered by

Line Kind
Coverage Requirements

run #1 run #2
Overall
Covered

12 go covered ✓G0 ✓G0 ✓
13 go covered ✓G0 ✓G0 ✓

c-recv-blocked ✓G1 ✓
17 select

c-recv-unblocking ✓G1 ✓
blocked ✓G1 ✓

21 lock
blocking ✓G1 ✓
unblocking ✓G1 ✓

22 unlock
no op
blocked ✓G2 ✓

25 lock
blocking ✓G2 ✓
blocked ✓G2 ✓G2 ✓
unblocking26 send
no op
unblocking

27 unlock
no op ✓G2 ✓
Coverage % 60% 33% 73%

73

context-switch is done through invocation of runtime.Gosched()which emits the GoSched

event. In GOAT, the main goroutine’s final event in a successful execution is GoSched with

runtime.traceStop on top of its stack.

We call an execution successful, if below conditions hold:

1. all goroutines spawned in the main goroutine has GoEnd as their final event,

2. the final event of the main goroutine is GoSched with runtime.traceStop on top of

its stack.

In the absence of any of these conditions, we conclude that the program suffers from

a “deadlock” bug because at least one goroutine did not reach its final state. Therefore,

GOAT executes procedure 2 which is a BFS traversal on the goroutine tree to check if the

program suffers from partial or global deadlocks.

DeadlockCheck(G):
if cur.lastEvent ̸= GoSched then

return Global Deadlock
end
toVisit = [G.children]
for |toVisit| ̸= 0 do

cur = toVisit[0]
if cur.lastEvent ̸= GoEnd then

return Partial Deadlock (leak)
end
for n in cur.Children do

append n to toVisit
end
toVisit = toVisit[1 :]

end
return Pass

Procedure 2: DeadlockCheck procedure with root node of goroutine tree (main gorou-
tine) as input

When a deadlock is detected, GOAT generates visualizations such as executed inter-

leaving (listing 1) and goroutine tree (figure 4.4). The detailed report magnifies the scenario

under which the bug has occurred and displays the final concurrent state of the program

right before the failure. Samples of such reports and visualizations are available in [?].

74

4.3.5.2 Coverage Measurement

Once the execution terminates, GOAT checks whether the extracted coverage require-

ments are covered. A mapping between ECT dynamic concurrent events and statically

obtained CU points is emitted by matching their respective call-stack and CU source lo-

cation. Through a BFS traversal of the goroutine tree, we add a coverage vector to each

goroutine node from the emitted mapping. Each element of the coverage vector is the

respective covered value of the coverage requirement for the current goroutine node. Dur-

ing executions of tests t ∈ T , we maintain and update a global goroutine tree after each t

to measure the progress of coverage percentage over tests in T . However, equivalencing

between two goroutines and their respective coverage vectors from different executions is

non-trivial. We say two goroutines Gm and Gn in the tests ti and tj are equivalent (i.e., falls

into a identical node in the global goroutine tree) if their parents are equivalent and their

creation source location (CU of kind go) are identical.

Gm ≡ Gn if


parent(Gm) ≡ parent(Gn) ∧
CU(Gm).file = CU(Gn).file ∧
CU(Gm).line = CU(Gn).line

(4.1)

4.4 Evaluation
4.4.1 Deadlock Detection

We assess the ability of GOAT and its variations in detecting bugs with the minimum

number of executions required to expose the bug. We have compared GOAT against three

existing dynamic detectors:

• Built-in deadlock detector: It is an embedded mechanism in the standard Go runtime.

The mechanism periodically makes sure that the queue of runnable goroutines is

never empty until the main goroutine terminates. If the queue is empty and the

main goroutine has not terminated yet (i.e., main is blocked), it throws a runtime

error.

• LockDL [44]: This tool intercepts with all mutex locks and unlocks of the target

application to maintain a “lock-set” data structure. LockDL issues warning during

runtime when it finds a circular wait in the lock-set or double-locking the same lock.

75

G0 (main)

Created at: -
Holds:

Blocks on:

Last event: GoSched

G1 (Monitor)

Created at: moby28462:12
Holds:

Blocks on:
 (M1)lock@moby28462:21

Last event: Block-Sync

G2 (StatusChange)

Created at: moby28462:13
Holds:
 (M1)lock@moby28462:21
Blocks on:
 (Ch1)send@moby28462:26

Last event: Block-send
Figure 4.4: Goroutine tree of the leak situation in listing 1

0%

25%

50%

75%

100%

Built-in LockDL goleak D0 D1 D2 D3 D4

GOAT

PDL GDL/TO Crash-Halt X

Figure 4.5: Histogram of detected bugs by each tool performed on 68 GoKer blocking
bugs. PDL: partial deadlock, GDL/TO: global deadlock, Crash/Halt: causes the program
to crash or halt during detection.

76

Table 4.4: Output of each tool on GoKer [114] blocking bugs. Detected bug (minimum
of executions required) – X (1000): the tool is not able to detect any bug after 1000
executions. PDL: Partial Deadlock, GDL: Global Deadlock, PDL-k: Partial Deadlock with
k number of goroutines leaked. DL: A warning for potential deadlock is issued. TO/GDL:
The global deadlock is detected because none of goroutines made any progress after 30
seconds, CRASH: The execution paniced because of a flaw in the execution (e.g., send on
closed channel panic), HANG: The tool halt for more than 10 minutes.

Bug Description Debugging Tools
GOAT

Cause SubCause Bug ID BUILTINDL GOLEAK LOCKDL
D0 D1 D2 D3 D4

cockroach 2448 X (1000) X (1000) X (1000) CRASH (1) CRASH (1) CRASH (1) CRASH (1) CRASH (1)
cockroach 24808 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach 25456 GDL (1) GDL(1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach 35073 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach 35931 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

etcd 6857 X (1000) PDL (325) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (11) PDL-1 (3) PDL-1 (3)
grpc 1275 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
grpc 1424 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
grpc 660 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

istio 17860 X (1000) PDL (1) X (1000) PDL-1 (2) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes 38669 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes 5316 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-2 (1) PDL-1 (1) PDL-2 (1) PDL-2 (1)
kubernetes 70277 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

moby 21233 X (1000) PDL (1) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
moby 33293 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (3) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby 4395 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

Channel

syncthing 5795 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
kubernetes 11298 X (1000) X (1000) TO/GDL (179) X (1000) TO/GDL (352) TO/GDL (158) TO/GDL (179) TO/GDL (179)Channel &

Conditional Variable moby 27782 X (1000) PDL (741) X (1000) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (4) PDL-2 (4)
cockroach 10790 X (1000) PDL (3) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
cockroach 13197 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach 13755 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach 18101 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

grpc 862 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
istio 18454 X (1000) PDL (13) X (1000) PDL-2 (5) PDL-1 (14) PDL-1 (4) PDL-1 (6) PDL-1 (6)

kubernetes 25331 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

Channel &
Context

moby 33781 X (1000) PDL (1) X (1000) PDL-1 (221) PDL-1 (10) PDL-1 (8) PDL-1 (10) PDL-1 (10)
moby 29733 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

Communication
Deadlock

Condition Variable
moby 30408 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

etcd 6873 X (1000) PDL (371) X (1000) PDL-2 (1) PDL-2 (2) PDL-2 (7) PDL-2 (6) PDL-2 (6)
etcd 7443 X (1000) X (1000) X (1000) X (1000) PDL-1 (9) PDL-1 (15) PDL-1 (14) PDL-1 (14)
etcd 7492 HANG (1) HANG (1) TO/GDL (4) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd 7902 X (1000) PDL (1) X (1000) PDL-4 (1) PDL-4 (1) PDL-4 (1) PDL-4 (1) PDL-4 (1)
grpc 1353 X (1000) PDL (1) X (1000) CRASH (1) CRASH (1) PDL-3 (1) PDL-3 (1) PDL-3 (1)
grpc 1460 X (1000) PDL (1) X (1000) PDL-2 (135) PDL-2 (1) PDL-2 (2) PDL-2 (1) PDL-2 (1)
istio 16224 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

kubernetes 10182 X (1000) PDL (44) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
kubernetes 1321 X (1000) PDL (307) X (1000) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
kubernetes 26980 GDL (375) GDL (131) X (1000) TO/GDL (191) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
kubernetes 6632 X (1000) X (1000) X (1000) PDL-2 (1) PDL-2 (1) PDL-2 (2) PDL-2 (1) PDL-2 (1)

moby 28462 X (1000) PDL (5) X (1000) PDL-2 (39) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)

Channel & Lock

serving 2137 X (1000) X (1000) X (1000) X (1000) X (1000) TO/GDL (88) X (1000) X (1000)
cockroach 1055 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)Channel &

WaitGroup cockroach 1462 X (1000) X (1000) TO/GDL (1) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

Mixed
Deadlock

Misuse WaitGroup moby 25384 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach 584 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
cockroach 9935 X (1000) PDL (1) DL (721) PDL-1 (1) PDL-1 (2) PDL-1 (1) PDL-1 (1) PDL-1 (1)

etcd 10492 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd 5509 X (1000) GDL (766) TO/GDL (426) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
etcd 6708 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
grpc 3017 GDL (4) GDL (4) TO/GDL (3) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
grpc 795 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)

hugo 5379 GDL (1) GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
moby 17176 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby 36114 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)
moby 7559 X (1000) PDL (1) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

Double locking

syncthing 4829 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach 16167 X (1000) X (1000) DL (1) X (1000) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
cockroach 3710 X (1000) X (1000) DL (123) PDL-2 (28) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
cockroach 6181 X (1000) PDL (1) X (1000) PDL-4 (1) PDL-4 (1) PDL-3 (1) PDL-1 (1) PDL-1 (1)

hugo 3251 GDL (1) GDL (1) DL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1) TO/GDL (1)
kubernetes 58107 X (1000) X (1000) X (1000) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1) PDL-1 (1)

RWR deadlock

kubernetes 62464 X (1000) X (1000) DL (6) PDL-2 (161) PDL-2 (7) PDL-2 (2) PDL-2 (3) PDL-2 (3)
cockroach 10214 X (1000) X (1000) X (1000) PDL-2 (368) PDL-2 (1) PDL-2 (1) PDL-2 (1) PDL-2 (1)
cockroach 7504 X (1000) X (1000) X (1000) PDL-2 (199) PDL-2 (1) PDL-2 (7) PDL-2 (1) PDL-2 (1)

kubernetes 13135 X (1000) PDL (1) DL (4) PDL-2 (1) PDL-2 (5) PDL-2 (1) PDL-2 (22) PDL-2 (22)
kubernetes 30872 X (1000) PDL (338) X (1000) PDL-3 (50) PDL-3 (2) PDL-3 (1) PDL-3 (6) PDL-3 (6)

Resource
Deadlock

AB-BA deadlock

moby 4951 X (1000) PDL (120) X (1000) PDL-2 (15) PDL-2 (2) PDL-2 (2) PDL-2 (1) PDL-2 (1)
Total Bugs: 68 Total Detected: 19 56 26 60 67 68 67 67

77

It has a timeout mechanism for the application that traps into global deadlocks (30

seconds).

• goleak [45]: This leak detector from Uber checks the program stack at the end of the

main goroutine’s execution to find the application-level goroutines that remained in

the stack (i.e., leaked).

All experiments are performed on a server with Intel(R) Xeon(R) CPU E7 processor (64

total cores with two threads per core and eight cores per socket), 512 GB of RAM with

Ubuntu 5.4.0 and Go version 1.15.6. Table 4.4 shows the details of results obtained from

1000 executions of each tool per bug.

Figure 4.5 and table 4.4 show that variations of GOAT outperforms other detector by

discovering the bug in 100% of the GoKer blocking benchmark. For example, the bug

kubernetes 6632 that is caused by misuse of channels and locks, only detected by GOAT

after a couple of executions, while other tools were unable to detect it after 1000 executions.

Figure 4.6 and highlighted cells of table 4.4 show that the idea of injecting random delays

around concurrency usage points in the program drastically reduces the required number

of testing iterations until the bug occurs. D0 means GOAT did not delay the program at

any point and D4 means that the target program has been delayed up to four times around

its CU points. Figures 4.5 and 4.6 also state that the increase in the delay bound of GOAT

does not necessarily increase the chance of exposing the bug. For example, the row of bug

serving 2137 in table 4.4 show that only GOAT D2 were able to detect the bug.

4.4.2 Coverage Analyis

We picked two representative bug kernels etcd7443 and kubernetes11298 to evaluate

the coverage idea as they both have extensive use of channels, mutexes, conditional vari-

ables, nested selects within nested for loops, and the buggy interleaving is proved to be

rare to happen. Figures ?? and ?? show the gradual increase in coverage percentage during

testing iterations for different values of D. Recall that D is the bound on the number of

yields that we inject to the native execution of a given program to perturb the scheduler

around concurrency usages. With the increase of D, the coverage percentage increase rate

also grows. With lower values of D, the coverage percentages start at lower values and

increase more slowly over iterations. The reason is that the scheduler does not get to

78

0%

25%

50%

75%

100%

Built-in LockDL goleak D0 D1 D2 D3 D4

GOAT

[1] [2-10) [10-100) [100-1000)

Figure 4.6: Percentage distribution for the average required number of iterations (falling
into each of the four given intervals) by each tool to detect 68 GoKer blocking bugs.

25%

35%

45%

55%

65%

75%

85%

1 5 10 15 20 25 30 35 40 45 5051

C
o

ve
ra

ge

Iterations

d0 d1 d2 d3 d4

Figure 4.7: Coverage percentage after each iteration of GOAT with various D values for
etcd7443. Iterations on the X axis of figures end when the respective bug is first detected.

79

20%

25%

30%

35%

40%

45%

50%

55%

1 5 10 15 20 25 30 35 38

C
o

ve
ra

ge

Iterations

d0 d1 d2 d3 d4

Figure 4.8: Coverage percentage after each iteration of GOAT with various D values for
kuberenetes11298. Iterations on the X axis of figures end when the respective bug is first
detected. E.g., GOAT (D2) detects the bug in kuberenetes11298 after 38 executions at
52.23% coverage percentage.

explore different interleavings (thus different coverage scenarios), and over iterations, the

program executes more deterministic regarding coverage requirements. However, higher

D does not necessarily increase the coverage (D2 and D4 in figure ??). The gradual increase

of the coverage percentage and non-uniform increase rates for different values of D reflects

the effectiveness of our proposed coverage metric. The drop in coverage for D1 in figure

?? is because of the new coverage requirements (e.g., a new goroutine is spawned and

executing some concurrency primitives) that were encountered during testing execution.

4.5 Related Work
4.5.1 Go Correctness

Decades of research effort have been dedicated to the logical and performance correct-

ness of concurrent and parallel programs. For CSP-based concurrent languages like Go,

static (source-level) analysis methods [66, 67, 82] tend to assure bug freedom and verify

safety properties through abstractions like session types and choreography synthesis. Ng

and Yoshida [82] first proposed a static tool to detect global deadlock in Go programs

using choreography synthesis. Later, Stadtmuller et al. [93] proposed a static trace-based

global detection approach based on forkable regular expressions. Lange et al. proposed

more static verification frameworks for checking channel safety, and liveness [66], and

behavioral model checking [67]. Both methods approximate Go programs with session

types and behavioral contracts extracted from their SSA intermediate representation. The

80

mentioned work has limitations for handling dynamic (e.g., in-loop) goroutine or channel

creation. They also do not scale and are impractical in real-world programs due to the

state explosion problem and lack of proper front-end interface [114]. Besides, similar to

other static analysis methods, they often suffer from false positives due to conservative

constraints.

Dynamic (runtime-level) analysis approaches [20,96] rely on code instrumentation and

program rewrites to obtain and analyze an execution model. Zhao et al. [117] introduced

a runtime monitoring approach for deadlock detection for Occam programs based on

wait-for graphs and some heuristics. Occam is a concurrent language based on CSP se-

mantics, and similar to Go, it uses channels to establish communication between processes.

Sulzmann and Stadtmuller proposed a dynamic verification approach for synchronous

(unbuffered) channels [95], and a vector-clock-based approach for asynchronous channels

[96]. Although they may support a larger subset of the Go language, they only focus on

channels as the root cause of deadlocks and evaluated only on relatively small examples.

Also, they usually do not scale for real-world Go applications with thousands of gorou-

tines and LOC [19].

Standard Go comes with a few dynamic analysis tools. For example, the race detector

[108] which is basically a wrapper around ThreadSanitizer [91], tracks memory accesses

and detect races that happened during execution. A few other facilities for code coverage

measurement, profiling, and tracing [48] are provided to deliver insight into the testing

quality and performance behavior. The built-in race detector [108], despite its limitations

(e.g. supporting up to 8192 goroutines), has proved to be effective in dynamically detecting

data races in most cases quickly.

4.5.2 Systematic Testing

Systematic testing combines ideas from static and dynamic approaches to reduce the

state space and reflect realistic behavior. Assuming the scheduler causes concurrency

bugs (and not the program input), they may not manifest during conventional testing

and difficult to reproduce, both due to non-deterministic decisions that the scheduler

makes. Researchers have applied different methods [103] to reduce the interleaving space

to explore effectively and efficiently. Delay-bounded [10, 23] and preemption-bounded

81

[75] techniques systematically “fuzz” the scheduler to equally and fairly cover feasible

interleaving. Other tools like Maple [113], CalFuzzer [56], and ConTest [21, 22] actively

control the scheduler to maximise a pre-defined concurrency coverage criterion [39] or the

probability of bug exposure [10].

4.6 Summary & Future Work
We presented GOAT, an analysis and testing framework for concurrent Go applications

to assist concurrency debugging of real-world applications. GOAT combines static and

dynamic methods to model and explore application execution. The scheduler behavior is

pertubed with automatically injected random delays to accelerate the exposure of bug, if

any. By dynamic measurment of a set of coverage requirements, we quantify the quality

of schedule-space exploration of GOAT. GOAT detects all 68 blocking bugs of GoKer

benchmark which are the bug kernels of top nine open-soruce projects written in Go. The

schedule perturbation showed effectiveness in accelerating the bug exposure. Proposed

coverage requirements accurately reflect the dynamic behavior of program executions and

testing iterations.

Engineering of GOAT is flexible and extensible to more advanced components. For

example, current minimal GOAT engine can be extended to take the full control over

the Go scheduler and “guide” testing towards untested interleaving. We are dockerizing

GOAT for easy and public use. We want to test on real-world programs. The data that ECT

includes is rich enough for training accurate models and apply machine learning methods

to learn and predict bug patterns.

CHAPTER 5

CONCLUSION AND FUTURE WORK

This dissertation presented a series of tools that combine concurrent debugging ap-

proaches to aid debugging using efficient data collection and automated analysis frame-

works. We presented PARLOT, a portable low overhead dynamic binary instrumentation-

based whole-program tracing approach that can support various dynamic program analy-

ses, including debugging. Key properties of PARLOT include its on-the-fly trace collection

and compression that reduces timing jitter, I/O bandwidth, and storage requirements to

such a degree that whole-program call/return traces can be collected efficiently even at

scale. We evaluated various versions of PARLOT created by disabling/enabling com-

pression. Our metrics include the tracing overhead, required bandwidth, achieved com-

pression ratio, initialization overhead, and the overall impact of compression. Detailed

evaluations on the NAS parallel benchmarks running on up to 1024 cores establish the

merit of our tool and our design decisions. PARLOT can collect more than 36 MB worth of

data per core per second while only needing 56 kB/s of bandwidth and slowing down the

application by 2.7x on average. These results are auspicious in supporting whole program

tracing and debugging, particularly considering that most of the overhead is due to the

DBI tool and not PARLOT.

We described the design of DiffTrace, the first tool we know of that situates debugging

around whole program diffing, and (1) provides user-selectable front-end filters of func-

tion calls to keep; (2) summarizes loops based on state-of-the-art algorithms to detect

loop-level behavioral differences; (3) condenses the loop-summarized traces into concept

lattices that are built using incremental algorithms; (4) and clusters behaviors using hier-

archical clustering and ranks them by similarity to detect and highlight the most salient

differences.

Lastly, we presented GOAT, an end-to-end analysis and debugging framework for con-

83

current Go applications. GOAT combines static and dynamic methods to gather evidence

about the dynamic behavior of concurrency primitives, model the program’s concurrency

behavior, and explore the interleaving space to reveal the flaws. GOAT detects all 68

blocking bugs of GoKer benchmark, which are the bug kernels adopted from the top nine

open-source projects written in Go. Moreover, by defining a set of coverage requirements

and dynamic measurement, we quantify the quality of the schedule-space exploration

of GOAT. Proposed coverage requirements accurately reflect the dynamic behavior of

program executions and testing iterations.

5.1 Future Work
The following is the list of improvements to be made for each tool and potential future

work in dynamic analysis tools.

5.1.1 PARLOT

• Allowing users to selectively trace at specific interfaces: doing so can further increase

compression efficiency by reducing the variety of function calls to be handled by the

compressor.

• The need to bring down initialization overheads: experiments show the majority of

overhead belongs to the initialization of Pin. Switching to a less general-purpose DBI

tool improves the efficiency of PARLOT.

5.1.2 DiffTrace

In our future work, we will improve DiffTrace components as follows:

• Optimizing them to exploit multi-core CPUs, thus reducing the overall analysis time.

• Converting ParLOT traces into Open Trace Format (OTF2) by logically timestamping

trace entries to mine temporal properties of functions such as happened-before [65].

• Conducting systematic bug-injection to see whether concept lattices and loop struc-

tures can be used as elevated features for precise bug classifications via machine

learning and neural network techniques.

84

• Taking up more challenging and real-world examples to evaluate DiffTrace against

similar tools and release it to the community.

5.1.3 GOAT

The engineering of GOAT is flexible and extensible to more advanced components. The

following is the list of potential improvements to the framework:

• The concurrency dynamic tracing of Go applications enables extensive investigation

of NLP/ML for concurrent debugging by training models (e.g., word2vec) based on

collected traces for automatic anomaly detection.

• The GOAT API can “control” which goroutine to execute next by maintaining the

history of executed interleavings and goroutine ids. This way, we can systematically

explore all possible interleavings efficiently to achieve a higher coverage percentage.

• We are actively developing GOAT as an open-source, easy-to-use (within an inde-

pendent container) testing tool. With the release of GOAT, we enable developers to

explore the schedule space of their concurrent applications to reveal potential flaws.

5.1.4 Dynamic Analysis Tools

The following enumerates a few future directions in dynamic analysis tools for HPC/-

Cloud community.

• Finding the sweet spot between maximal data collection and minimal slowdown is the

key for a dynamic analysis tool to gain acceptance and practical use for real-world

and large-scale applications. Picking the right data to collect maximizes the trade-off

[102][98].

• Both static and dynamic analysis tools have advantages and limitations. Comple-

menting ideas from both sides help to achieve a high degree of confidence about

the program’s bug freedom while enabling practical use of the tool in production

languages.

• It is not feasible to put the developer completely out of the “debugging” loop through

fully automated mechanisms. Tools may produce false positives and miss bugs that

85

did not occur. It is the developer’s task to achieve a high degree of confidence in her

software. If a bug is revealed during testing or verification, the developer needs to

fix the bug or incorporate the suggested fix. In other words, the developer is the one

who closes the debugging circle and delivers the software. Middleware tools like

PARLOT, DiffTrace, and GOAT, which provide a human-readable representation of

dynamic behavior of complex programs, can drastically reduce the cost of debug-

ging.

REFERENCES

[1] X. Aguilar, K. Fürlinger, and E. Laure, Online mpi trace compression using event
flow graphs and wavelets, Procedia Computer Science, 80 (2016), pp. 1497 – 1506.
International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA.

[2] X. Aguilar, K. Fürlinger, and E. Laure, Online mpi trace compression using event
flow graphs and wavelets, Procedia Computer Science, 80 (2016), pp. 1497 – 1506.
International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA.

[3] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P. Miller, and

M. Schulz, Scalable temporal order analysis for large scale debugging, in Proceedings of
the Conference on High Performance Computing Networking, Storage and Analy-
sis, Nov 2009, pp. 1–11.

[4] A. Allinea, Allinea DDT.

[5] V. Arora, R. K. Bhatia, and M. Singh, A systematic review of approaches for testing
concurrent programs, Concurr. Comput. Pract. Exp., 28 (2016), pp. 1572–1611.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,

H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, The nas parallel bench-
marks—summary and preliminary results, in Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, Supercomputing ’91, New York, NY, USA, 1991,
ACM, pp. 158–165.

[7] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst, Synoptic: Studying
logged behavior with inferred models, in Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, New York, NY, USA, 2011, ACM, pp. 448–451.

[8] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, Applications of synchronization
coverage, in Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’05, New York, NY, USA, 2005, Association
for Computing Machinery, p. 206–212.

[9] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and

M. Schulz, Automaded: Automata-based debugging for dissimilar parallel tasks, in 2010
IEEE/IFIP International Conference on Dependable Systems Networks (DSN), June
2010, pp. 231–240.

[10] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, A randomized
scheduler with probabilistic guarantees of finding bugs, in Proceedings of the Fifteenth

87

International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, New York, NY, USA, 2010, Association for
Computing Machinery, p. 167–178.

[11] M. Burtscher, H. Mukka, A. Yang, and F. Hesaaraki, Real-time synthesis of
compression algorithms for scientific data, in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC ’16,
Piscataway, NJ, USA, 2016, IEEE Press, pp. 23:1–23:12.

[12] M. Burtscher and H. Rabeti, A scalable heterogeneous parallelization framework for
iterative local searches, in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, May 2013, pp. 1289–1298.

[13] M. Christakis, A. Gotovos, and K. Sagonas, Systematic testing for detecting con-
currency errors in erlang programs, in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, 2013, pp. 154–163.

[14] S. Claggett, S. Azimi, and M. Burtscher, SPDP: An Automatically Synthesized
Lossless Compression Algorithm for Floating-Point Data, in 2018 Data Compression
Conference, 2018.

[15] A. Cohen, X. Shen, J. Torrellas, J. Tuck, Y. Zhou, S. Adve, I. Akturk,

S. Bagchi, R. Balasubramonian, R. Barik, M. Beck, R. Bodik, A. Butt, L. Ceze,

H. Chen, Y. Chen, T. Chilimbi, M. Christodorescu, J. Criswell, C. Ding,

Y. Ding, S. Dwarkadas, E. Elmroth, P. Gibbons, X. Guo, R. Gupta, G. Heiser,

H. Hoffman, J. Huang, H. Hunter, J. Kim, S. King, J. Larus, C. Liu, S. Lu,

B. Lucia, S. Maleki, S. Mazumdar, I. Neamtiu, K. Pingali, P. Rech, M. Scott,

Y. Solihin, D. Song, J. Szefer, D. Tsafrir, B. Urgaonkar, M. Wolf, Y. Xie,

J. Zhao, L. Zhong, and Y. Zhu, Inter-Disciplinary Research Challenges in Computer
Systems for the 2020s, USA, 2018.

[16] J. Coplin, A. Yang, A. Poppe, and M. Burtscher, Increasing Telemetry Throughput
Using Customized and Adaptive Data Compression, in AIAA SPACE and Astronautics
Forum and Exposition, 2016.

[17] J. Davison de St. Germain, J. McCorquodale, S. Parker, and C. Johnson, Uintah:
a massively parallel problem solving environment, in Proceedings the Ninth International
Symposium on High-Performance Distributed Computing, 2000, pp. 33–41.

[18] D. de Oliveira, A. Humphrey, Q. Meng, Z. Rakamaric, M. Berzins, and

G. Gopalakrishnan, Systematic debugging of concurrent systems using coalesced stack
trace graphs, in Proceedings of the 27th International Workshop on Languages and
Compilers for Parallel Computing (LCPC), September 2014.

[19] N. Dilley and J. Lange, An empirical study of messaging passing concurrency in go
projects, in 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019, pp. 377–387.

[20] N. Dilley and J. Lange, Bounded verification of message-passing concurrency in go using
promela and spin, Electronic Proceedings in Theoretical Computer Science, 314 (2020),
p. 34–45.

88

[21] O. Edelstein, E. Farchi, E. Goldin, Y. Nir-Buchbinder, G. Ratsaby, and S. Ur,
Framework for testing multithreaded java programs, Concurrency and Computation:
Practice and Experience, 15 (2003).

[22] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, Multithreaded java program
test generation, in Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java
Grande, JGI ’01, New York, NY, USA, 2001, Association for Computing Machinery,
p. 181.

[23] M. Emmi, S. Qadeer, and Z. Rakamarić, Delay-bounded scheduling, in Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’11, New York, NY, USA, 2011, Association for Computing
Machinery, p. 411–422.

[24] C. Flanagan and P. Godefroid, Dynamic partial-order reduction for model checking
software, in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’05, New York, NY, USA, 2005, Association
for Computing Machinery, p. 110–121.

[25] E. B. Fowlkes and C. L. Mallows, A method for comparing two hierarchical clusterings,
Journal of the American Statistical Association, 78 (1983), pp. 553–569.

[26] F. Freitag, J. Caubet, and J. Labarta, On the Scalability of Tracing Mechanisms,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 97–104.

[27] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A. Reed, Scalable
load-balance measurement for spmd codes, in SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, Nov 2008, pp. 1–12.

[28] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st ed., 1997.

[29] Q. Gao, F. Qin, and D. K. Panda, Dmtracker: finding bugs in large-scale parallel
programs by detecting anomaly in data movements, in SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, Nov 2007, pp. 1–12.

[30] V. Garg, Maximal antichain lattice algorithms for distributed computations, in Dis-
tributed Computing and Networking, D. Frey, M. Raynal, S. Sarkar, R. K. Shya-
masundar, and P. Sinha, eds., Berlin, Heidelberg, 2013, Springer Berlin Heidelberg,
pp. 240–254.

[31] V. K. Garg, Introduction to lattice theory with computer science applications, Wiley, 2015.

[32] R. Godin, R. Missaoui, and H. Alaoui, Incremental concept formation algorithms based
on galois (concept) lattices, Computational Intelligence, 11, pp. 246–267.

[33] Golang, Command Trace.

[34] G. Gopalakrishnan, P. D. Hovland, C. Iancu, S. Krishnamoorthy, I. Laguna,

R. A. Lethin, K. Sen, S. F. Siegel, and A. Solar-Lezama, Report of the HPC
correctness summit, jan 25-26, 2017, washington, DC, CoRR, abs/1705.07478 (2017).

89

[35] C. Gottbrath and P. Thompson, Totalview tips and tricks, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006,
ACM.

[36] K. Hazelwood and A. Klauser, A dynamic binary instrumentation engine for the
arm architecture, in Proceedings of the 2006 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES ’06, New York, NY, USA,
2006, ACM, pp. 261–270.

[37] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,

A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich,
Improving performance via mini-applications, Sandia National Laboratories, Tech. Rep.
SAND2009-5574, 3 (2009).

[38] C. A. R. Hoare, Communicating sequential processes, Commun. ACM, 21 (1978),
p. 666–677.

[39] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, Testing concurrent programs
to achieve high synchronization coverage, in Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ISSTA 2012, New York, NY, USA, 2012,
Association for Computing Machinery, p. 210–220.

[40] https://blog.golang.org/survey2019-results, Go Developer Survey 2019 Results.

[41] https://github.com/coreos/etcd, ETCD: A distributed, reliable key-value store for the
most critical data of a distributed system.

[42] https://github.com/grpc/grpc-go, A high performance, open source, general RPC
framework that puts mobile and HTTP/2 first.

[43] https://github.com/moby/moby/issues/28405, moby-28462-commit.

[44] https://github.com/sasha-s/go-deadlock, Online deadlock detection in go (golang).

[45] https://github.com/uber-go/goleak, Uber goleak.

[46] https://golang.org/doc/effective go.html, Effective Go.

[47] https://golang.org/pkg/go/ast/, Package AST.

[48] https://golang.org/pkg/runtime/trace/, Package Trace.

[49] https://golang.org/ref/mem, The Go Memory Model, 2014.

[50] https://golang.org/src/internal/trace/parser.go, Package Parser.

[51] https://kubernetes.io/docs/reference/, Kubernetes Reference.

[52] D. I. Ignatov, Introduction to formal concept analysis and its applications in information
retrieval and related fields, CoRR, abs/1703.02819 (2017).

[53] Intel, Pin, A Dynamic Binary Instrumentation.

[54] D. Johnson and L. A. McGeoch, The traveling salesman problem: A case study in local
optimization, Local Search in Combinatorial Optimization, 1 (1997).

90

[55] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for
Python, 2001–. [Online; accessed ¡today¿].

[56] P. Joshi, M. Naik, C.-S. Park, and K. Sen, Calfuzzer: An extensible active testing
framework for concurrent programs, in Computer Aided Verification, A. Bouajjani and
O. Maler, eds., Berlin, Heidelberg, 2009, Springer Berlin Heidelberg, pp. 675–681.

[57] M. Jurenz, R. Brendel, A. Knupfer, M. Muller, and W. E. Nagel, Memory allo-
cation tracing with vampirtrace, in Proceedings of the 7th International Conference on
Computational Science Part II, ICCS ’07, Berlin, Heidelberg, 2007, Springer-Verlag,
pp. 839–846.

[58] I. Karlin, J. Keasler, and R. Neely, LULESH 2.0 Updates and Changes, August 2013.

[59] R. M. Karp, R. E. Miller, and A. L. Rosenberg, Rapid identification of repeated
patterns in strings, trees and arrays, in Proceedings of the Fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’72, New York, NY, USA, 1972, ACM,
pp. 125–136.

[60] A. Ketterlin and P. Clauss, Prediction and trace compression of data access addresses
through nested loop recognition, in Proceedings of the 6th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’08, New York, NY,
USA, 2008, ACM, pp. 94–103.

[61] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,

M. Geimer, M. Gerndt, D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik,

P. Philippen, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner,

B. Wesarg, and F. Wolf, Score-p: A joint performance measurement run-time infrastruc-
ture for periscope, scalasca, tau, and vampir, in Tools for High Performance Computing
2011 - Proceedings of the 5th International Workshop on Parallel Tools for High
Performance Computing, ZIH, Dresden, September 2011, 2011, pp. 79–91.

[62] M. Kobayashi and M. MacDougall, Dynamic characteristics of loops, IEEE Transac-
tions on Computers, C-33 (1984), pp. 125–132.

[63] S. O. Kuznetsov and S. A. Obiedkov, Comparing performance of algorithms for gener-
ating concept lattices, Journal of Experimental & Theoretical Artificial Intelligence, 14
(2002), pp. 189–216.

[64] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky, D. H. Anh,

M. Schulz, and B. Rountree, Large scale debugging of parallel tasks with automaded,
in Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011, ACM,
pp. 50:1–50:10.

[65] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun.
ACM, 21 (1978), pp. 558–565.

[66] J. Lange, N. Ng, B. Toninho, and N. Yoshida, Fencing off go: Liveness and safety for
channel-based programming, in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, New York, NY, USA, 2017,
Association for Computing Machinery, p. 748–761.

91

[67] J. Lange, N. Ng, B. Toninho, and N. Yoshida, A static verification framework for
message passing in go using behavioural types, in Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, New York, NY, USA, 2018, Associa-
tion for Computing Machinery, p. 1137–1148.

[68] B. Liu and J. Huang, D4: Fast concurrency debugging with parallel differential analysis,
in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, New York, NY, USA, 2018, ACM, pp. 359–
373.

[69] S. Lu, S. Park, E. Seo, and Y. Zhou, Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics, in Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, New York, NY, USA, 2008, Association for Computing Ma-
chinery, p. 329–339.

[70] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, Pin: Building customized program analysis tools
with dynamic instrumentation, in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, New York, NY,
USA, 2005, ACM, pp. 190–200.

[71] D. Merkel, Docker: lightweight linux containers for consistent development and deploy-
ment, Linux journal, 2014 (2014), p. 2.

[72] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.

Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, The paradyn parallel
performance measurement tool, IEEE Computer, 28 (1995), pp. 37–46.

[73] S. Mitra, I. Laguna, D. H. Ahn, S. Bagchi, M. Schulz, and T. Gamblin, Accurate
application progress analysis for large-scale parallel debugging, in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’14, New York, NY, USA, 2014, ACM, pp. 193–203.

[74] K. Mohror and K. L. Karavanic, Evaluating similarity-based trace reduction techniques
for scalable performance analysis, in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, New York, NY, USA,
2009, ACM, pp. 55:1–55:12.

[75] M. Musuvathi and S. Qadeer, Iterative context bounding for systematic testing of
multithreaded programs, in Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, New York, NY,
USA, 2007, Association for Computing Machinery, p. 446–455.

[76] E. W. Myers, An O(ND) difference algorithm and its variations, Algorithmica, 1 (1986),
pp. 251–266.

[77] A. Nakamura, T. Saito, I. Takigawa, M. Kudo, and H. Mamitsuka, Fast algorithms
for finding a minimum repetition representation of strings and trees, Discrete Applied
Mathematics, 161 (2013), pp. 1556 – 1575.

92

[78] A. Nataraj, A. Malony, A. Morris, D. C. Arnold, and B. Miller, A framework for
scalable, parallel performance monitoring, 22 (2009), pp. 720–735.

[79] N. Nethercote and J. Seward, Valgrind: A program supervision framework, Electr.
Notes Theor. Comput. Sci., 89 (2003), pp. 44–66.

[80] N. Nethercote and J. Seward, How to shadow every byte of memory used by a program,
in Proceedings of the 3rd International Conference on Virtual Execution Environ-
ments, VEE ’07, New York, NY, USA, 2007, ACM, pp. 65–74.

[81] M. D. Network, C Sequence Points.

[82] N. Ng and N. Yoshida, Static deadlock detection for concurrent go by global session graph
synthesis, in Proceedings of the 25th International Conference on Compiler Construc-
tion, CC 2016, New York, NY, USA, 2016, Association for Computing Machinery,
p. 174–184.

[83] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski, Scalatrace:
Scalable compression and replay of communication traces for high-performance computing,
Journal of Parallel and Distributed Computing, 69 (2009), pp. 696 – 710. Best Paper
Awards: 21st International Parallel and Distributed Processing Symposium (IPDPS
2007).

[84] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de Supinski, and

D. J. Quinlan, Detecting patterns in mpi communication traces, 2008 37th International
Conference on Parallel Processing, (2008), pp. 230–237.

[85] P. Ratanaworabhan and M. Burtscher, Program phase detection based on critical basic
block transitions, in ISPASS 2008 - IEEE International Symposium on Performance
Analysis of Systems and software, April 2008, pp. 11–21.

[86] L. D. Rose, A. Gontarek, A. Vose, R. Moench, D. Abramson, M. N. Dinh, and

C. Jin, Relative debugging for a highly parallel hybrid computer system, in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, 2015,
pp. 63:1–63:12.

[87] P. C. Roth, D. C. Arnold, and B. P. Miller, Mrnet: A software-based multicast/re-
duction network for scalable tools, in Supercomputing, 2003 ACM/IEEE Conference,
Nov 2003, pp. 21–21.

[88] P. C. Roth, J. S. Meredith, and J. S. Vetter, Automated characterization of parallel
application communication patterns, in Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC ’15, New
York, NY, USA, 2015, ACM, pp. 73–84.

[89] S. M. Russ Cox, Profiling Go Programs, 2013.

[90] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and S. Cran-

ford, Open | speedshop: An open source infrastructure for parallel performance analysis,
Scientific Programming, 16 (2008), pp. 105–121.

93

[91] K. Serebryany and T. Iskhodzhanov, Threadsanitizer: Data race detection in practice,
in Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA
’09, New York, NY, USA, 2009, Association for Computing Machinery, p. 62–71.

[92] S. S. Shende and A. D. Malony, The Tau parallel performance system, International
Journal on High Performance Computer Applications, 20 (2006), pp. 287–311.

[93] K. Stadtmüller, M. Sulzmann, and P. Thiemann, Static trace-based deadlock analysis
for synchronous mini-go, in Programming Languages and Systems, A. Igarashi, ed.,
Cham, 2016, Springer International Publishing, pp. 116–136.

[94] S. M. Strande, H. Cai, T. Cooper, K. Flammer, C. Irving, G. von Laszewski,

A. Majumdar, D. Mishin, P. Papadopoulos, W. Pfeiffer, R. S. Sinkovits, M. Tati-

neni, R. Wagner, F. Wang, N. Wilkins-Diehr, N. Wolter, and M. L. Norman,
Comet: Tales from the long tail: Two years in and 10,000 users later, in Proceedings of the
Practice and Experience in Advanced Research Computing 2017 on Sustainability,
Success and Impact, PEARC17, New York, NY, USA, 2017, ACM, pp. 38:1–38:7.

[95] M. Sulzmann and K. Stadtmüller, Trace-based run-time analysis of message-passing go
programs, CoRR, abs/1709.01588 (2017).

[96] M. Sulzmann and K. Stadtmüller, Two-phase dynamic analysis of message-passing go
programs based on vector clocks, PPDP ’18, New York, NY, USA, 2018, Association for
Computing Machinery.

[97] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K. Niemi,

A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell, B. Gruneir,

J. Jaffray, L. Zhang, and P. Mattis, Cockroachdb: The resilient geo-distributed sql
database, in Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, New York, NY, USA, 2020, Association for
Computing Machinery, p. 1493–1509.

[98] S. Taheri, A tool for automatic suggestions for irregular gpu kernel optimization, Master’s
thesis, Texas State University, San Marcos, Texas, 12 2014.

[99] S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan, Difftrace: Efficient
whole-program trace analysis and diffing for debugging, in 2019 IEEE International Con-
ference on Cluster Computing (CLUSTER), 2019, pp. 1–12.

[100] S. Taheri, S. Devale, G. Gopalakrishnan, and M. Burtscher, ParLOT: Efficient
whole-program call tracing for HPC applications, in Programming and Performance
Visualization Tools - International Workshops, ESPT 2017 and VPA 2017, Denver,
CO, USA, November 12 and 17, 2017, and ESPT 2018 and VPA 2018, Dallas, TX,
USA, November 16 and 11, 2018, Revised Selected Papers, 2018, pp. 162–184.

[101] S. Taheri and G. Gopalakrishnan, Automated dynamic concurrency analysis for go,
CoRR, abs/2105.11064 (2021).

[102] S. Taheri, A. Qasem, and M. Burtscher, A tool for automatically suggesting source-
code optimizations for complex GPU kernels, CoRR, abs/1910.07776 (2019).

94

[103] P. Thomson, A. F. Donaldson, and A. Betts, Concurrency testing using schedule
bounding: An empirical study, in Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, New York, NY, USA,
2014, Association for Computing Machinery, p. 15–28.

[104] M. M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, A.: Pmac binary
instrumentation library for powerpc/aix, in In: Workshop on Binary Instrumentation
and Applications, 2006.

[105] E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur, and

E. Farchi, Forcing small models of conditions on program interleaving for detection of
concurrent bugs, in Proceedings of the 7th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, PADTAD ’09, New York, NY, USA, 2009,
Association for Computing Machinery.

[106] T. Tu, X. Liu, L. Song, and Y. Zhang, Understanding real-world concurrency bugs in
go, in Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, New
York, NY, USA, 2019, Association for Computing Machinery, p. 865–878.

[107] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf,

K. Antypas, D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo,

A. Aiken, D. Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman,

A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang, J. Leidel, S. Li,

R. Lucas, J. Mellor-Crummey, P. Peltz Jr., T. Peterka, M. Strout, and

J. Wilke, Extreme heterogeneity 2018 - productive computational science in the era of
extreme heterogeneity: Report for doe ascr workshop on extreme heterogeneity, (2018).

[108] D. Vyukov and A. Gerrand, Introducing the Go Race Detector, 2013.

[109] M. Weber, R. Brendel, T. Hilbrich, K. Mohror, M. Schulz, and H. Brunst,
Structural Clustering: A New Approach to Support Performance Analysis at Scale, IEEE,
May 2016, pp. 484–493.

[110] J. Weidendorfer, Sequential performance analysis with callgrind and kcachegrind, in
Tools for High Performance Computing - Proceedings of the 2nd International Work-
shop on Parallel Tools for High Performance Computing, July 2008, HLRS, Stuttgart,
2008, pp. 93–113.

[111] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, MPC: A massively parallel
compression algorithm for scientific data, in 2015 IEEE International Conference on
Cluster Computing, Sept 2015, pp. 381–389.

[112] J. Yu and S. Narayanasamy, A case for an interleaving constrained shared-memory
multi-processor, in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, ISCA ’09, New York, NY, USA, 2009, Association for Computing
Machinery, p. 325–336.

[113] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, Maple: A coverage-driven testing
tool for multithreaded programs, OOPSLA ’12, New York, NY, USA, 2012, Association
for Computing Machinery, p. 485–502.

95

[114] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, Gobench: A benchmark suite of
real-world go concurrency bugs, in 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2021, pp. 187–199.

[115] X. Yuan and J. Yang, Effective concurrency testing for distributed systems, ASPLOS ’20,
New York, NY, USA, 2020, Association for Computing Machinery, p. 1141–1156.

[116] A. Zeller, Yesterday, my program worked. today, it does not. why?, in Software En-
gineering - ESEC/FSE’99, 7th European Software Engineering Conference, Held
Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Toulouse, France, September 1999, Proceedings, 1999, pp. 253–267.

[117] J. Zhao, H. Abe, Y. Nomura, J. Cheng, and K. Ushijima, Runtime detection of
communication deadlocks in occam 2 programs, (1997), pp. 97–107.

[118] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans.
Inf. Theor., 23 (2006), pp. 337–343.

