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Abstract— The complexity of HPC software and hardware
is quickly increasing. As a consequence, the need for efficient
execution tracing to gain insight into HPC application behavior
is steadily growing. Unfortunately, available tools either do not
produce traces with enough detail or incur large overheads. An
efficient tracing method that overcomes the tradeoff between
maximum information and minimum overhead is therefore ur-
gently needed. This paper presents such a method and tool,
called ParLoT, with the following key features. (1) It describes
a technique that makes low-overhead on-the-fly compression
of whole-program call traces feasible. (2) It presents a new,
efficient, incremental trace-compression approach that reduces
the trace volume dynamically, which lowers not only the needed
bandwidth but also the tracing overhead. (3) It collects all
caller/callee relations, call frequencies, call stacks, as well as
the full trace of all calls and returns executed by each thread,
including in library code. (4) It works on top of existing dynamic
binary instrumentation tools, thus requiring neither source-code
modifications nor recompilation. (5) It supports program analysis
and debugging at the thread, thread-group, and program level.
This paper establishes that comparable capabilities are currently
unavailable. Our experiments with the NAS parallel benchmarks
running on the Comet supercomputer with up to 1,024 cores show
that ParLoT can collect whole-program function-call traces at an
average tracing bandwidth of just 56 kB/s per core.

Index Terms—Tracing, HPC, data compression, incremental
compression

I. INTRODUCTION

Understanding and debugging HPC programs is time-
consuming for the user and computationally inefficient. This
is especially true when one has to track control flow in terms
of function calls and returns that may span library and sys-
tem codes. Traditional software engineering quality assurance
methods are often inapplicable to HPC where concurrency
combined with large problem scales and sophisticated domain-
specific math can make programming very challenging. For
example, it took months for scientists to debug an MPI laser-
plasma interaction code [1].

HPC bugs may be a combination of both flawed program
logic and unspecified or illegal interactions between various
concurrency models (e.g., PThreads, MPI, OpenMP, etc.) that
coexist in most large applications [1]. Moreover, HPC software
tends to consume vast amounts of CPU time and hardware
resources. Reproducing bugs by rerunning the application
is therefore expensive and undesirable. A natural and field-

proven approach for debugging is to capture detailed execution
traces and compare the traces against corresponding traces
from previous (stable) runs [2], [3]. A key requirement is to
do this collection as efficiently as possible and in as general
and comprehensive a manner as possible.

Existing tools in this space do not meet our criteria for
efficiency and generality. The highly acclaimed STAT [2] tool
has helped isolate bugs based on building equivalence classes
of MPI processes and spotting outliers. We would like to
go beyond the capabilities offered by STAT and support the
collection of whole-program traces that can then be employed
by a gamut of back-end tools. Also, STAT is usually brought
into the picture when a failure (e.g., a deadlock or hang)
is encountered. We would like to move toward an “always
on” collection regime, as we cannot anticipate when a failure
will occur – or, more importantly, whether the failure will
be reproducible. There are no reported debugging studies on
using STAT in continuous collection (“always on”) mode. In
CSTG [3], the collection is orchestrated by the user around
chosen collection points and employs heavy-weight unix
backtrace calls. These again are different from PARLOT,
where collection points would not be a priori chosen.

The thrust of the work in this paper is to avoid many of the
drawbacks of existing tracing-based tools. We are interested in
avoiding source-code modifications and recompilation — thus
making binary instrumentation-based tools the only practical
and widely deployable option. We also believe in the value
of creating tools that are portable across a wide variety of
platforms.

Our goal is to use compression for trace aggregation and
to offer a generic and low-overhead tracing method that
(1) collects dynamic call information during execution (all
function calls and returns) for debugging, performance evalu-
ation, phase detection [4], etc., (2) has low overhead, (3) and
requires little tracing bandwidth. Providing all these features
in a single tool that operates based on binary instrumentation
is an unsolved problem. In this paper, we describe a new
tracing approach that fulfills these requirements, which we
implemented in our proof-of-concept PARLOT tool.

With PARLOT, users can easily build a host of post-
processors to examine executions from many vantage points.
For instance, they can write post-processors to detect unex-



pected (or “outlier”) executions. If needed, they can drill down
and detect abnormal behaviors even in the runtime and support
library stack such as MPI-level activities. In HPC, it is well-
known (especially on newer machines) that bugs are often due
to broken libraries (MPI, OpenMP), a broken runtime, or OS-
level activities. Having a single low-overhead tool that can “X-
ray” an application to this depth is a goal met by PARLOT—
a unique feature in today’s tool eco-system.

To further motivate the need for whole-program function
call traces, consider the expression f()+g(). In C, there is
no sequence point associated with the + operator [5]. If these
function calls have inadvertent side-effects causing failure,
it is important to know in which order f() and g() were
invoked—something that is easy to discern using PARLOT’s
traces. One may be concerned that such a tool introduces
excessive execution slowdown. PARLOT goes to great lengths
to minimize these overheads to a level that we believe most
users will find acceptable. The mindset is to “pay a little
upfront to dramatically reduce the number of overall debug
iterations”.

As proof of concept, we gathered preliminary results from
using the PARLOT tracing mechanism to compare different
runs. We injected various bugs into the MPI-related functions
of ILCS [6], a parallelization framework for iterative local
searches. We ran PARLOT on top of executions of buggy and
bug-free versions of ILCS and collected traces. Since PAR-
LOT’s traces maintain the order of the function calls, we were
able to split the traces at multiple points of interest and to feed
different chunks of traces to a Concept Lattice data structure
[7] [8]. Having the totally ordered sequence of function calls
of the whole program for each active process/thread enabled
us to quickly narrow down the search space to locate the cause
of the abnormal behavior in the buggy version of ILCS.

This paper does not pursue debugging per se but rather a
thorough benchmarking of PARLOT. It makes the following
main contributions:

• It introduces a new tracing approach that makes it possi-
ble to capture the whole-program call-return, call-stack,
call-graph, and call-frequency information, including all
library calls, for every thread and process of HPC appli-
cations at low overhead in both space and time.

• It describes a new incremental data compression algo-
rithm to drastically reduce the required tracing bandwidth,
thus enabling the collection of whole-program traces,
which would be infeasible without on-the-fly compres-
sion.

• It presents PARLOT, a proof-of-concept tool that im-
plements our compression-based low-overhead tracing
approach. PARLOT is capable of instrumenting x86 ap-
plications at the binary level (regardless of the source
language used) to collect whole-program call traces.

The remainder of this paper is organized as follows. Section II
introduces the basic ideas and infrastructure behind PARLOT
and other tracing tools. Section III describes the design of
PARLOT in detail. Sections IV and V present our evaluation
of different aspects of PARLOT and compare it with a similar

tool. Section VI concludes the paper with a summary and
future work.

II. BACKGROUND AND RELATED WORK

Recording a log of events during the execution of an
application is essential for better understanding the program
behavior and, in case of a failure, to locate the problem.
Recording this type of information requires instrumentation
of the program either at the source-code or the binary-code
level. Instrumenting the source code by adding extra libraries
and statements to collect the desired information is easy for
developers. However, doing so modifies the code and requires
recompilation, often involving multiple different tools and
complex hierarchies of makefiles and libraries, which can
make this approach cumbersome and frustrating for users.
Instrumenting an executable at the binary level using a tool
is typically easier, faster, and less error prone for most users.
Moreover, binary instrumentation is language independent,
portable to any system that has the appropriate instrumentation
tool installed, and provides machine-level insight into the
behavior of the application.

A. Binary Instrumentation

Executables can be instrumented statically, where the addi-
tional code is inserted into the binary before execution, which
results in a persistent modified executable, or dynamically,
where the modification of the executable is not permanent. In
dynamic binary instrumentation, code behavior can be mon-
itored at runtime, making it possible to handle dynamically-
generated and self-modifying code. Furthermore, it may be
feasible to attach the instrumentation to a running process,
which is particularly useful for long-running applications and
infinite loops.

Many different tools for investigating application behavior
have been designed on top of such Dynamic Binary Instrumen-
tation (DBI) frameworks. For instance, Dyninst [9] provides a
dynamic instrumentation API that gives developers the ability
to measure various performance aspects. It is used in tools like
Open-SpeedShop [10] and TAU [11] as well as correctness
debuggers like STAT [2]. Moreover, VampirTrace [12] uses it
to provide a library for collecting program execution logs.

Valgrind [13] is a shadow-value DBI framework that keeps
a copy of every register and memory location. It provides
developers with the ability to instrument system calls and
instructions. Error detectors such as Memcheck [14] and
call-graph generators like CALLGRIND [15] are built upon
Valgrind.1

We implemented PARLOT on top of PIN [16], a DBI
framework for the IA-32, x86-64, and MIC instruction-set ar-
chitectures for creating dynamic program analysis tools. There
is also version of PIN available for the ARM architecture

1Given the absence of tools similar to PARLOT, we employ CALLGRIND
as a “close-enough” tool in our comparisons elaborated in §IV-C. In this
capacity, CALLGRIND is similar to PARLOT(M), a variant of PARLOT that
only collects traces from the main image. We perform such comparison to
have an idea of how we fare with respect to one other tool. In §V, we also
present a self-assessment of PARLOT separately.



[17]. PARLOT mutates PIN to trace the entry (call) and exit
(return) of every executed function. Note that our tracing and
compression approaches can equally be implemented on top of
other instrumentation tools. For example, PMaC [18] is a DBI
tool for the PowerPC/AIX architecture upon which PARLOT
could also be based.

B. Efficient Tracing

When dealing with large-scale parallel programs, any at-
tempt to capture reasonably frequent events will result in a
vast amount of data. Moreover, transferring and storing the
data will incur significant overhead. For example, collecting
just one byte of information per executed instruction yields on
the order of a gigabyte of data per second on a single high-end
core. Storing the resulting multi-gigabyte traces from many
cores can be a challenge, even on today’s large hard disks.

Hence, to be able to capture whole-program call traces,
we need a way to decrease the space and runtime overhead.
Compression can encode the generated data using a smaller
number of bits, help reduce the amount of data movement
across the memory hierarchy, and lower storage and network
demands. Although the encoded data will later have to be
decoded for analysis, compressing them during tracing enables
the collection of whole-program traces.

The use of compression by itself is not new. Various
performance evaluation tools [11], [19], [20] already employ
compression during the collection of performance analysis
data. Tools such as ScalaTrace [21] also exploit the repeti-
tive nature of time-step simulations [22]. Aguilar et al. [23]
proposed a lossy compression mechanism using the Nami
library [24] for online MPI tracing. Mohror and Karavanic
[25] investigated similarity-based trace reduction techniques
to store and analyze traces at scale.

Many performance and debugging tools for HPC applica-
tions [2], [26] rely on mechanisms such as MRNet [27] to
accelerate the collection and aggregation of traces based on
an overlay network to overcome the challenge of massive
data movement and analysis. However, our experiments show
that, due to the high compression ratio of PARLOT traces,
such mechanisms for data movement and aggregation may be
unnecessary.

The novelty offered by PARLOT lies in the combination
of compression speed, efficacy, and low timing jitter made
possible by its incremental lossless compression algorithm,
which is described in §III. It immediately compresses all
traced information while the application is running, that is,
PARLOT does not record the uncompressed trace in memory.
As a result, just a few kilobytes of data need to be written out
per thread and per second, thus requiring only a small fraction
of the disk or network bandwidth. The traces are decompressed
later when they are read for offline analysis. From the decom-
pressed full function-call trace, the complete call-graph, call-
frequency, and caller-callee information can be extracted. This
can be done at the granularity of a thread, a group of threads,
or the whole application. We now elaborate on the design of
PARLOT that makes these innovations possible.

Fig. 1. Overview of PARLOT

III. DESIGN OF PARLOT

Our experimental results in §V highlight why compression
is essential to make our approach work. We used PARLOT
to record a unique 16-bit identifier for every function call
and return. Tracing just this small amount of information
without compression when running the Mantevo miniapps [28]
on Stampede 1 resulted in about 2 MB/s of data per core
on average. Extrapolating this value to all 102,400 cores of
Stampede 1 (not counting the accelerators) yields 205 GB/s of
trace data, which exceeds the Lustre filesystem’s parallel write
performance of 150 GB/s. Enabling PARLOT’s compression
algorithm reduced the emitted trace data by a factor of 100
on average, a ratio that is quite stable w.r.t scaling, making
it possible to trace full-scale programs while leaving over
98% of the I/O bandwidth to the application. Therefore,
PARLOT should also work for codes with higher bandwidth
requirements than the ones we tested.

Figure 1 provides a general overview of PARLOT’s work-
flow. Basic blocks within program executables are dynamically
instrumented before being executed. The collected data are
compressed on-the-fly at runtime.

A. Tracing Operation

PARLOT uses the PIN API as its instrumentation mecha-
nism to gather traces. In particular, it instructs PIN to instru-
ment every thread launch and termination in the application
as well as every function entry and exit. The thread-launch
instrumentation code initializes the per-thread tracing variables
and opens a file into which the trace data from that thread will
be written. The thread-termination code finalizes any ongoing
compression, flushes out any remaining entries, and closes the
trace file. PARLOT assigns every static function in each image
(main program and all libraries) a unique unsigned 16-bit ID,
which it records in a separate file together with the image and



function name. This file allows the trace reader to map IDs
back to function-name/image pairs.

For every function entry, PARLOT executes extra code
that has access to the thread ID, function ID, and current
stack-pointer (SP) value. Based on the SP value, it performs
call-stack correction if necessary (see §III-D), adds the new
function to a data structure it maintains that holds the call
stack (which is separate from the application’s runtime stack),
and emits the function ID into the trace file via an incremen-
tal compression algorithm (see §III-B). All of this is done
independently for each thread. Similarly, for every function
exit, PARLOT also executes extra code that has access to the
thread ID, function ID, and current SP value. Based on the SP
value, it performs call-stack correction if necessary, removes
the function from its call-stack data structure, and emits the
reserved function ID of zero into the trace file to indicate an
exit. As before, this is done via an incremental compression
algorithm. We use zero for all exits rather than emitting the
function ID and a bit to specify whether it is an entry or exit
because using zeros results in more compressible output. This
way, half of the values in the trace will be zero.

B. Incremental Compression

PARLOT immediately compresses the traced information
even before it is written to memory. It does, however, keep
a sliding window (circular buffer) of the most recent uncom-
pressed trace events, which is needed by the compressor. It
compresses each function ID before the next function ID is
known. The conventional approach would be to first record
uncompressed function IDs in a buffer and later compress the
whole buffer once it fills up. However, this makes the pro-
cessing time very non-uniform. Whereas almost all function
IDs can be recorded very quickly since they just have to be
written to the buffer, processing a function ID that happens to
fill the buffer takes a long time as it triggers the compression
of the entire buffer. This results in sporadic blocking of
threads during which time they make no progress towards
executing the application code. Initial experiments revealed
that such behavior can be detrimental when one thread is
polling data from another thread that is currently blocked due
to compression. For example, we observed a several order of
magnitude increase in entry/exit events of an internal MPI
library function when using block-based compression.

To remedy this situation, the compressor must operate in-
crementally, i.e., each piece of trace data must be compressed
when it is generated, without buffering it first, to ensure that
there is never a long-latency compression delay. Few existing
compression algorithms have been implemented in such a
manner because it is more difficult to code up and probably
a little slower. Nevertheless, we were able to implement our
algorithm (discussed next) in this way so that each trace event
is compressed with similar latency.

C. Compression Algorithm

We used the CRUSHER framework [29], [30], [31], [32]
to automatically synthesize an effective and fast lossless

compression algorithm for our traces. CRUSHER is based
on a library of data transformations extracted from various
compression algorithms. It combines these transformations in
all possible ways to generate algorithm candidates, which
it then evaluates on a set of training data. We gathered
uncompressed traces from some of the Mantevo miniapps [28]
for this purpose. This evaluation revealed that a particular
word-level Lempel-Ziv (LZ) transformation followed by a
byte-level Zero-Elimination (ZE) transformation works well.
In other words, PARLOT’s trace entries, which are two-byte
words, are first transformed using LZ. The output is interpreted
as a sequence of bytes, which is transformed using ZE for
further compression. The output of ZE is written to secondary
storage.

LZ implements a variant of the LZ77 algorithm [33]. It
uses a 4096-entry hash table to identify the most recent prior
occurrence of the current value in the trace. Then it checks
whether the three values immediately before that location
match the three trace entries just before the current location. If
they do not, the current trace entry is emitted and LZ advances
to the next entry. If the three values match, LZ counts how
many values following the current value match the values
following that location. The length of the matching substring
is emitted and LZ advances by that many values. Note that
all of this is done incrementally. The history of previous trace
entries available to LZ for finding matches is maintained in a
64k-entry circular buffer.

ZE emits a bitmap in which each bit represents one input
byte. The bits indicate whether the corresponding bytes are
zero or not. Following each eight-bit bitmap, ZE emits the
non-zero bytes.

As mentioned above, we had to implement the two transfor-
mations incrementally to minimize the maximum latency. This
required breaking them up into multiple pieces. Depending on
the state the compressor is in when the next trace entry needs
to be processed, the appropriate piece of code is executed and
the state updated. If the LZ code produces an output, which it
only does some of the time, then the appropriate piece of the
ZE code is executed in a similar manner.

D. PIN and Call-Stack Correction

To be able to decode the trace, i.e., to correctly associate
each exit with the function entry it belongs to, our trace reader
maintains an identical call-stack data structure. Unfortunately,
and as pointed out in the PIN documentation [34], it is not
always possible to identify all function exits. For example, in
optimized code, a function’s instructions may be inlined and
interleaved with the caller’s instructions, making it sometimes
infeasible for PIN to identify the exit. As a consequence, we
have to ensure that PARLOT works correctly even when PIN
misses an exit. This is why the SP values are needed.

During tracing, PARLOT not only records the function
IDs in its call stack but also the associated SP values. This
enables it to detect missing exits and to correct the call stack
accordingly. Whenever a function is entered, it checks if there
is at least one entry in the call stack and, if so, whether



its SP value is higher than that of the current SP. If it is
lower, we must have missed at least one exit since the runtime
stack grows downwards (the SP value decreases with every
function entry and increases with every exit). If a missing exit
is detected in this manner, PARLOT pops the top element from
its call stack and emits a zero to indicate a function exit. It
repeats this procedure until the stack is empty or its top entry
has a sufficiently high SP value. The same call-stack correction
technique is applied for every function exit whose SP value
is inconsistent. Note that the SP values are only used for this
purpose and are not included in the compressed trace.

The result is an internally consistent trace of function entry
and exit events, meaning that parsing the trace will yield a
correct call stack. This is essential so that the trace can be
decoded properly. Moreover, it means that the trace includes
exits that truly happened in the application but that were
missed by PIN. Note, however, that our call-stack correction is
a best-effort approach and may, in rare cases, temporarily not
reflect what the application actually did. For example, this can
happen for functions that do not create a frame on the runtime
stack. When implementing PARLOT on top of another DBI
framework, call-stack correction may not be needed, resulting
in even lower PARLOT overhead.

IV. EVALUATION METHODOLOGY

A. Benchmarks and System

We performed our evaluations on the MPI-based NAS
Parallel Benchmarks (NPB) [35]. NPB includes four inputs
sizes. To keep the runtimes reasonable, we show results for
the class B (small-medium) and class C (medium-large) inputs.

We compiled the NPB codes with the mpicc and mpif77
wrappers of MVAPICH 2.2.1, which are based on icc/ifort
14.0.2 using the prescribed -g and -O1 optimization flags.
Quick tests showed that higher optimization levels do not
significantly improve the performance.

We ran all experiments on Comet at the San Diego Super-
computer Center [36], whose filesystem is NFS and Lustre.
Comet has 1944 compute nodes, each of which has dual-socket
Intel Xeon E5-2680 v3 processors with a total of 28 cores (14
per socket) and 128 GB of main memory. Note that we only
used 16 cores per node as many of the NPB programs require
a core count that is a power of two. To study the scaling
behavior, we ran experiments on 1, 4, 16 and 64 compute
nodes, i.e., on up to 1024 cores.

B. Metrics

We use the following metrics to quantify and compare the
performance of the tracing tools. Unless otherwise noted, all
results are based on the median of three identical experiments.

• The tracing overhead is the runtime of the target ap-
plication when it is being traced divided by the runtime
of the same application without tracing. This lower-is-
better ratio measures by how much the tracing (and
the compression when enabled) slows down the target
application.

• The tracing bandwidth is the size of the trace infor-
mation divided by the application runtime. To make the
results easier to compare, we generally list the tracing
bandwidth per core, i.e., the tracing bandwidth divided
by the number of cores used. This lower-is-better metric
is expressed in kilobytes per second (kB/s) per core. It
specifies the average needed bandwidth to record the trace
data.

• The compression ratio is the size of the uncompressed
trace divided by the size of the generated (compressed)
trace. This higher-is-better ratio measures the factor by
which the compression reduces the trace size. In other
words, without compression, the tracing bandwidth would
be higher by this factor.

C. Tracing Tools

We compare our PARLOT tool, implemented on top of
PIN 3.5, with CALLGRIND 3.13. PARLOT was compiled with
gcc 4.9.2 using PIN’s make system and CALLGRIND with
Valgrind’s make system. We created the following versions of
PARLOT to evaluate different aspects of its design.

• PARLOT(M) is the normal PARLOT tool configured to
only collect function-call traces from the main image of
the application.

• PARLOT(A) is the normal PARLOT tool configured
to collect function-call traces from all images of the
application, including library function calls.

• PIN-INIT is a crippled version of PARLOT from which
the tracing code has been removed. The purpose of PIN-
INIT is to see how much of the overhead is due to PIN.

• PARLOT-NC is the normal PARLOT tool but with
compression disabled. It writes out the captured data in
uncompressed form. The purpose of PARLOT-NC is to
show the performance impact of the compression.

It proved surprisingly difficult to find a tool that is similar
to PARLOT because there appear to be no other tools that
generate whole program call traces. In the end, we settled
on CALLGRIND as the most similar tool we could find and
used it for our comparisons. CALLGRIND is based on the
Valgrind DBI tool. It collects function-call graphs combined
with performance data to show the user what portion of the
execution time has been spent in each function.

Each CALLGRIND trace file contains a sequence of function
names (or their code) plus numerical data for each function on
its caller-callee relationship with other functions. Moreover,
it contains cost information for each function in terms of
how many machine instructions it read. This information is
collected using hardware performance counters. The format of
the file is plain ASCII text. Interestingly, all numerical values
are expressed relative to previous values, i.e., they are delta
(or difference) encoded. This simple form of compression is
enabled by default in CALLGRIND.

We believe the information traced by CALLGRIND is rea-
sonably similar to the information traced by PARLOT(M).
Whereas CALLGRIND’s traces include performance data that



Fig. 2. Average tracing overhead on the NPB applications - Input B

PARLOT does not capture, PARLOT records the whole-
program call trace, which CALLGRIND does not capture. The
full function-call trace is a strict superset of the call-graph
information that CALLGRIND records because the call graph
can be extracted from the function-call trace but not vice versa.
In particular, CALLGRIND cannot recreate the order of the
function calls a thread made whereas PARLOT can.

V. RESULTS

A. Tracing Overhead

Table I shows the tracing overhead of PARLOT(M), PAR-
LOT(A), and CALLGRIND on each application of the NPB
benchmark suite for different node counts. The last column
of the table lists the geometric mean over all eight programs.
The AVG rows show the average over the four node counts.

Fig. 3. Average tracing overhead on the NPB applications - Input C

On average, both PARLOT(M) and PARLOT(A) outperform
CALLGRIND. The bolded numbers in Table I for input C show
that the average overhead is 1.94 for PARLOT(M), 2.73 for
PARLOT(A), and 4.63 for CALLGRIND. Figures 2 and 3 show
these results in visual form.

The key takeaway point is that the overhead of PARLOT is
roughly a factor of two to three, which we believe users may
be willing to accept, for example, if it helps them debug their
applications. This is promising especially when considering
how detailed the collected trace information is and that most
of the overhead is due to PIN (see §V-D). Note that PARLOT’s
overhead is typically lower than that of CALLGRIND, which
collects less information.

The overhead of PARLOT increases as we scale the ap-

TABLE I
OVERHEAD ADDED BY EACH TOOL

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 1.6 1.8 2.6 2.1 2.5 1.3 2.5 1.3 1.9
4 1.8 1.9 1.9 1.7 1.8 1.8 1.5 1.7 1.8
16 2.2 2.6 2.0 1.9 1.8 2.7 2.4 2.2 2.2
64 2.1 2.2 2.4 2.0 4.3 4.4 2.0 2.1 2.5

AVG 1.9 2.1 2.2 1.9 2.6 2.6 2.1 1.8 2.1

PARLOT(A)

1 1.8 2.7 4.2 2.8 4.2 1.7 4.8 1.7 2.8
4 2.6 3.1 3.4 2.8 3.0 2.8 2.8 2.7 2.9
16 3.5 4.2 3.4 2.9 2.8 4.3 4.5 3.7 3.6
64 3.1 3.3 3.8 3.0 5.4 4.7 3.2 3.3 3.7

AVG 2.8 3.3 3.7 2.9 3.9 3.4 3.8 2.8 3.2

CALLGRIND

1 8.6 6.0 8.9 10.1 2.5 7.5 3.3 6.6 6.1
4 6.0 3.6 2.9 3.5 1.5 5.2 1.2 5.8 3.2
16 4.3 3.3 2.2 2.2 1.7 4.6 1.8 4.3 2.8
64 2.3 2.0 1.7 2.1 4.1 4.0 1.5 2.5 2.3

AVG 5.3 3.7 3.9 4.5 2.4 5.3 2.0 4.8 3.6

C

PARLOT(M)

1 1.4 1.3 2.5 1.9 2.3 1.1 1.7 1.1 1.6
4 1.6 1.7 1.8 1.6 1.7 1.3 1.8 1.4 1.6
16 1.8 2.4 2.5 1.5 1.8 2.2 2.4 1.8 2.0
64 2.2 2.7 2.4 1.6 4.5 3.4 2.4 2.2 2.6

AVG 1.8 2.0 2.3 1.7 2.6 2.0 2.1 1.6 1.9

PARLOT(A)

1 1.5 1.6 3.2 2.0 2.8 1.2 2.5 1.2 1.9
4 1.9 2.4 2.6 2.1 2.6 1.7 3.1 1.7 2.2
16 2.7 3.5 4.1 2.1 2.8 3.2 4.0 2.5 3.0
64 3.6 4.1 4.2 2.2 5.5 4.4 4.2 3.0 3.8

AVG 2.4 2.9 3.5 2.1 3.4 2.6 3.5 2.1 2.7

CALLGRIND

1 8.5 4.4 13.2 13.1 3.3 7.9 5.9 5.1 6.9
4 8.7 4.5 4.8 6.4 1.7 6.4 2.8 6.3 4.6
16 6.9 3.9 3.1 2.8 1.8 6.4 2.1 6.1 3.7
64 4.4 3.5 2.1 2.5 4.2 5.2 2.1 3.8 3.3

AVG 7.1 4.1 5.8 6.2 2.8 6.5 3.2 5.3 4.6



TABLE II
REQUIRED BANDWIDTH PER CORE (KB/S)

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 4.7 21.9 3.8 1.5 0.8 2.4 5.6 5.4 3.7
4 14.3 41.1 1.9 3.5 2.2 21.5 6.5 15.9 8.1
16 14.3 46.6 1.5 4.9 3.4 31.8 6.5 18.6 9.4
64 18.6 43.6 1.3 4.6 4.5 27.1 5.6 29.6 9.9

AVG 13.0 38.3 2.1 3.6 2.7 20.7 6.1 17.4 7.8

PARLOT(A)

1 48.7 89.4 47.2 45.6 60.0 53.6 60.8 54.3 56.2
4 61.8 101.2 45.2 55.1 53.2 71.1 54.9 73.6 62.7
16 74.0 116.9 47.4 48.9 47.8 100.9 55.8 84.6 68.0
64 81.8 110.2 44.2 48.0 37.8 100.3 52.7 99.9 66.5

AVG 66.6 104.4 46.0 49.4 49.7 81.5 56.0 78.1 63.3

CALLGRIND

1 1.6 7.7 7.4 4.6 39.5 2.6 34.4 2.7 6.7
4 6.5 16.0 22.1 15.7 45.5 8.6 45.5 7.8 16.3
16 17.2 24.6 37.4 23.8 29.9 16.2 51.5 15.8 24.9
64 26.8 27.7 45.9 25.1 11.0 17.8 45.3 20.2 25.0

AVG 13.0 19.0 28.2 17.3 31.5 11.3 44.2 11.6 18.2

C

PARLOT(M)

1 1.8 17.0 5.2 1.2 0.7 0.8 3.6 1.4 2.2
4 7.5 44.9 3.0 2.5 2.1 20.1 7.1 13.7 7.6
16 16.3 55.0 1.8 6.1 3.4 34.1 7.2 20.7 10.7
64 17.5 61.4 1.3 5.9 4.4 38.3 5.6 26.1 10.9

AVG 10.8 44.6 2.8 3.9 2.7 23.3 5.9 15.5 7.8

PARLOT(A)

1 17.8 53.4 26.3 20.9 48.3 25.3 52.6 19.5 30.0
4 51.8 95.8 36.8 43.8 51.4 58.4 54.2 65.8 55.2
16 75.4 121.0 44.3 61.4 46.9 101.1 56.5 101.3 71.4
64 80.6 135.2 43.5 46.3 37.1 117.9 54.1 99.0 69.0

AVG 56.4 101.4 37.7 43.1 45.9 75.7 54.3 71.4 56.4

CALLGRIND

1 0.4 3.1 2.0 1.1 14.6 0.7 7.0 0.8 1.9
4 1.8 8.9 7.7 4.5 31.7 2.8 21.0 2.8 6.4
16 6.0 15.8 22.9 10.8 26.5 7.5 39.1 7.0 13.7
64 14.3 19.6 35.8 12.2 11.1 11.9 40.7 12.8 17.4

AVG 5.6 11.8 17.1 7.1 21.0 5.7 26.9 5.8 9.8

Fig. 4. Average required bandwidth per core (kB/s) on the NPB applications
- Input B

plications to more compute nodes. However, the increase
is quite small. Going from 16 to 1024 cores, a 64-fold
increase in parallelism, only increases the average overhead by
between 1.3- and 2.1-fold. In contrast, CALLGRIND’s overhead
decreases with increasing node count, making it more scalable.
Having said that, CALLGRIND’s overhead is larger for the C
inputs whereas PARLOT’s overhead is larger for the smaller B
inputs. In other words, PARLOT scales better to larger inputs
than CALLGRIND.

PARLOT’s scaling behavior can be explained by correlating
it with the expected function-call frequency. When distributing
a fixed problem size over more cores, each core receives less
work. As a consequence, less time is spent in the functions
that process the work, resulting in more function calls per

Fig. 5. Average required bandwidth per core (kB/s) on the NPB applications
- Input C

time unit, which causes more work for PARLOT. In contrast,
when distributing a larger problem size over the same number
of cores, each core receives more work. Hence, more time
is spent in the functions that process the work, resulting in
fewer function calls per time unit, which causes less work
for PARLOT and therefore less tracing overhead. Hence, we
believe PARLOT’s overhead to be even lower on long-running
inputs, which is where our tracing technique is needed the
most.

In summary, PARLOT’s overhead is in the single digits
for all evaluated applications and configurations, including for
1024-core runs. It appears to scale reasonably to larger node
counts and well to larger problem sizes.



Fig. 6. Average compression ratio of PARLOT on the NPB applications -
Input B

Fig. 7. Average compression ratio of PARLOT on the NPB applications -
Input C

B. Required Bandwidth

Table II, Fig. 4 and Fig. 5 show how much trace bandwidth
each tool requires during the application execution. On aver-
age, PARLOT(M) requires less bandwidth than CALLGRIND,
especially for smaller inputs. PARLOT(A)’s bandwidth is
much higher as it collects call information from all images
and not just the main image like PARLOT(M) does.

We see that the required bandwidth for different input
sizes of the NPB applications are almost equal in PARLOT.
According to the NPB documentation, the number of iterations
for inputs B and C are the same for all applications. They only
differ in the number of elements or the grid size. It is clear
that the required bandwidth of PARLOT is independent of the
problem size, unlike CALLGRIND, where the input size has a
linear impact on the results.

C. Compression Ratio

Table III shows the compression ratios for all config-
urations and inputs. On average, PARLOT stores between
half a kilobyte and a kilobyte of trace information in a
single byte. We observe that the average compression ratio
for PARLOT(A) on input C is 644.3, and its corresponding
required bandwidth from Table II is 56.4 kB/s. This means
PARLOT can collect more than 36 MB worth of data per
core per second while only needing 56 kB/s of the system

Fig. 8. Tracing overhead breakdown - Input B

Fig. 9. Tracing overhead breakdown - Input C

bandwidth, leaving the rest of the available bandwidth to the
application. In comparison, CALLGRIND collects less than
100 kB of data but still adds more overhead compared to
either PARLOT(A) or PARLOT(M). The average amount of
trace data that can be collected by PARLOT(A) is 360x
(85x for PARLOT(M)) larger than that for CALLGRIND. In
the best observed case, the compression ratio of PARLOT
exceeds 21000. This is particularly impressive because it
was achieved with relatively low overhead and incremental
on-the-fly compression. Generally, the compression ratios of
PARLOT(M) are higher than those of PARLOT(A) because the
variety of distinct function calls on the main image is smaller
than when tracing all images, thus compression performs better
on PARLOT(M). Also by looking at Fig. 4, Fig. 5, Fig. 6
and Fig. 7, we find EP to have the highest compression
ratio of the NPB applications. At the same time, it has the
minimum required bandwidth. The opposite is true for CG,
which exhibits the lowest compression ratio and the highest
required bandwidth. CG is a conjugate gradient method with
irregular memory accesses and communications whereas EP
is an embarrassingly parallel random number generator. CG’s
whole-program trace contains a larger number of distinct calls
and more complex patterns than that of EP, thus resulting in
a higher bandwidth and lower compression ratio.

PARLOT’s compression mechanism works better on larger
input sizes because larger inputs tend to result in longer



TABLE III
COMPRESSION RATIO

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B

PARLOT(M)

1 3 035.9 94.4 12 456.2 12 173.5 9 718.4 167.7 99.1 878.3 1 255.2
4 586.6 82.5 10 368.4 1 737.1 909.2 140.3 255.0 338.2 559.4

16 346.7 113.3 8 563.9 1 077.4 1 200.6 179.0 387.6 123.0 496.8
64 252.2 147.8 7 611.0 1 122.6 1 908.0 366.8 437.3 152.9 591.1

AVG 1 055.4 109.5 9 749.9 4 027.6 3 434.0 213.5 294.7 373.1 725.6

PARLOT(A)

1 514.5 137.4 3 335.8 1 226.7 543.2 314.6 260.9 303.9 500.2
4 315.7 137.2 1 266.9 436.2 316.2 287.3 329.6 199.7 330.7

16 226.9 181.6 1 246.7 1 026.5 927.1 299.3 469.3 171.5 430.4
64 329.2 247.3 1 394.1 1 043.9 1 984.6 410.3 548.5 307.2 597.6

AVG 346.6 175.9 1 810.9 933.3 942.8 327.9 402.1 245.6 464.7

C

PARLOT(M)

1 8 619.0 111.2 13 068.0 21 335.6 21 856.5 350.0 247.4 1 977.4 2 371.4
4 1 910.6 110.5 12 418.7 6 520.3 2 256.6 112.8 268.0 472.7 928.2

16 580.8 133.2 11 017.4 1 239.3 1 347.9 164.5 396.9 143.1 582.8
64 322.8 131.9 9 155.0 1 065.1 1 896.3 223.7 465.7 168.9 585.7

AVG 2 858.3 121.7 11 414.7 7 540.1 6 839.3 212.7 344.5 690.5 1 117.0

PARLOT(A)

1 2 579.4 181.8 7 377.0 5 143.1 1 520.4 408.2 314.8 650.7 1 107.4
4 448.6 161.3 3 194.6 1 062.9 527.3 274.7 319.4 237.4 477.4

16 285.1 185.7 1 765.5 588.9 1 106.3 273.6 467.4 141.7 426.9
64 290.0 214.7 1 512.9 1 237.3 2 038.7 329.0 496.2 270.8 565.8

AVG 900.8 185.9 3 462.5 2 008.1 1 298.2 321.4 399.4 325.2 644.4

Fig. 10. Variability of PARLOT(M) overhead on 16 nodes - Input B

streams of similar function calls (e.g., a call that is made for
every processed element).

D. Overheads

Tables IV and V present the average overhead added to each
application for different versions of PARLOT. The last row of
these two tables presents the geometric mean. This information
captures how much each phase of PARLOT slows down the
native execution.

In general, one expects the following inequality to hold: the
overhead of PIN-INIT should be less than that of PARLOT,
which should be less than that of PARLOT-NC. This is not
always the case because of the non-deterministic runtimes of
the applications. In fact, the variability across three runs of
each experiment is shown in Fig. 10 where we present the
minimum, maximum and median overheads. These overheads
are for input size B and 16 nodes. This variability explains
the seeming inconsistencies in Tables IV and V.

On average, PIN-INIT adds an overhead of 3.28 and
PARLOT(A) adds an overhead of 3.42. This means that

Fig. 11. PARLOT-NC tracing overhead breakdown - Input B

Fig. 12. PARLOT-NC tracing overhead breakdown - Input C

almost 96% of PARLOT(A)’s overhead is due to PIN.
The results of PARLOT(M) and other inputs follow the same
pattern as shown in Fig. 8 and 9 show. The overhead that
PARLOT (excluding the overhead of PIN-INIT) adds to the
applications is very small. If we were to switch to a different



TABLE IV
TRACING OVERHEAD OF VERSIONS OF PARLOT(M)- INPUT B

Input: B Nodes : 1 4 16 64
Detail Tools: PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC

Main

bt 1.5 1.5 5.6 1.7 1.7 5.0 2.1 2.1 5.0 1.8 2.1 3.5
cg 1.7 1.8 2.3 1.8 1.8 2.6 2.7 2.5 4.4 2.3 2.1 4.6
ep 2.9 2.6 20.4 1.9 1.8 5.3 2.4 1.9 3.0 2.6 2.3 2.6
ft 1.8 2.1 6.1 1.7 1.7 2.7 2.0 1.8 2.2 2.1 1.9 2.1
is 2.4 2.4 4.8 1.7 1.7 2.0 2.1 1.7 1.8 4.5 4.3 5.7
lu 1.3 1.3 1.4 1.7 1.7 2.2 2.7 2.7 3.6 3.0 4.3 6.1
mg 2.5 2.5 2.7 1.5 1.5 1.5 2.6 2.4 2.6 1.9 1.9 1.8
sp 1.3 1.3 2.4 1.7 1.7 3.5 2.1 2.1 2.3 1.9 2.0 2.5

GM 1.8 1.9 4.1 1.7 1.7 2.9 2.3 2.1 3.0 2.4 2.5 3.3

TABLE V
TRACING OVERHEAD OF VERSIONS OF PARLOT(A)- INPUT B

Input: B Nodes : 1 4 16 64
Detail Tools: PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC PIN-INIT PARLOT PARLOT-NC

All

bt 1.7 1.8 6.1 2.3 2.5 6.1 3.2 3.5 9.0 2.8 3.1 7.5
cg 2.6 2.7 3.8 2.8 3.0 4.4 4.0 4.2 11.3 3.3 3.2 10.3
ep 4.3 4.1 22.2 3.1 3.4 7.1 3.1 3.3 4.5 4.1 3.8 4.1
ft 2.8 2.7 6.8 2.6 2.7 3.8 2.8 2.9 3.6 3.1 3.0 3.5
is 4.4 4.2 7.0 2.8 2.9 3.4 2.9 2.8 3.2 5.3 5.4 8.8
lu 1.7 1.7 2.3 2.5 2.7 4.8 3.9 4.3 10.4 4.4 4.6 23.4
mg 4.8 4.7 5.3 2.5 2.7 3.0 4.3 4.4 5.2 2.7 3.1 3.2
sp 1.7 1.7 3.0 2.4 2.6 5.0 3.2 3.6 5.6 2.7 3.3 11.6

GM 2.7 2.7 5.5 2.6 2.8 4.5 3.4 3.6 6.0 3.5 3.6 7.4

instrumentation tool that is not as general as PIN but more
lightweight, the overhead would potentially reduce drastically.

E. Compression Impact

Fig. 11 and Fig. 12 show the overhead breakdown of
PARLOT-NC, which illustrate the impact of compression.
They also highlight the importance of incorporating com-
pression directly in the tracing tool. On average, PARLOT-
NC slows down the application execution almost 2x more
than PARLOT(A). The average overhead across Table V for
PARLOT(A) is 3.4. The corresponding factor for PARLOT-
NC is 6.6. The numbers of PARLOT(M) and input C follow
the same pattern. For example, PARLOT-NC slows down the
application execution almost 1.66x more than PARLOT(M).

Clearly, compression not only lowers the storage require-
ment but also the overhead. This is important as it shows that
the extra computation to perform the compression is more than
amortized by the reduction in the amount of data that need to
be written out.

This result validates our approach and highlights that in-
cremental, on-the-fly compression is likely essential to make
whole-program tracing possible at low overhead.

VI. DISCUSSION AND CONCLUSION

In this paper, we present PARLOT, a portable low overhead
dynamic binary instrumentation-based whole-program tracing
approach that can support a variety of dynamic program
analyses, including debugging. Key properties of PARLOT
include its on-the-fly trace collection and compression that
reduces timing jitter, I/O bandwidth, and storage requirements
to such a degree that whole-program call/return traces can be
collected efficiently even at scale.

We evaluate various versions of PARLOT created by dis-
abling/enabling compression, not collecting any traces, etc. In
order to provide an intuitive comparison against a well known
tool, we also compare PARLOT to CALLGRIND. Our metrics
include the tracing overhead, required bandwidth, achieved
compression ratio, initialization overhead, and the overall
impact of compression. Detailed evaluations on the NAS
parallel benchmarks running on up to 1024 cores establish
the merit of our tool and our design decisions. PARLOT can
collect more than 36 MB worth of data per core per second
while only needing 56 kB/s of bandwidth and slowing down
the application by 2.7x on average. These results are highly
promising in terms of supporting whole program tracing and
debugging, in particular when considering that most of the
overhead is due to the DBI tool and not PARLOT.

The traces collected by PARLOT cut through the entire
stack of heterogeneous (MPI, OpenMP, PThreads) calls. This
permits a designer to project these traces onto specific APIs of
interest during program analysis, visualization, and debugging.

A number of improvements to PARLOT remain to be made.
These include allowing users to selectively trace at specific
interfaces: doing so can further increase compression effi-
ciency by reducing the variety of function calls to be handled
by the compressor. We also discuss the need to bring down
initialization overheads, i.e., by switching to a less general-
purpose DBI tool.
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