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HPC Debugging is Challenging…
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• Hierarchy of parallelism

• Heterogeneity of compilers & libraries

• Complex and large code bases

• Debugging iterations are expensive

• Resources (time, CPU cycles, energy, etc.)

• Reproducibility limitations
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Existing Approaches
Iteratively
•Guess the potential bug
• Pick the right debugger
• Instrumentation / Re-compile
•Re-execute
•Gather limited data for specific bug 
•Analyze data

Debugging Approaches
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Existing Approaches DiffTrace Approach
Iteratively
•Guess the potential bug
• Pick the right debugger
• Instrumentation / Re-compile
•Re-execute
•Gather limited data for specific bug 
•Analyze data

Collect one standard set of data
Iteratively (offline):
• Intelligently summarize data
•Compare w/ expected behavior
•Detect outliers
•Visualize points of differences

Debugging Approaches
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Parallel/HPC Debuggers

• Relative Debugging [DeRose’15]

• Delta Debugging [Choi’02]

• Structural Clustering [Weber’16]

• STAT [Arnold’07]

• AutomaDeD [Laguna’11]
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DiffTrace Overview
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DiffTrace Overview

Data
Collection

Data Summarization
Classification

Diff Similarities Visualized 
Diff
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ParLOT [ESPT’18]

• Instruments binary using Intel PIN API

• Captures function calls/returns (main/all image)

• Compress traces incrementally on-the-fly

• Avg. compression ratio: 1117.1

• Avg. required bandwidth: 7.8 KB/S

• Avg. overhead on exec. time: 1.94

• Enables offline analysis of the whole program 11
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A Walk-through Example



Sample Trace (mpirun –np 4 pin –t parlot.so -- ./oddeven)
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Tracing (mpirun –np 4 pin –t parlot.so -- ./oddeven)

Core 0 Core 1 Core 2 Core 3

Compression Compression Compression Compression

Trace 0 Trace 2Trace 1 Trace 3

Instrumented Binary

mpirun
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Tracing (mpirun –np 4 pin –t parlot.so -- ./oddeven)

Core 0 Core 1 Core 2 Core 3

Compression Compression Compression Compression

Trace 0 Trace 2Trace 1 Trace 3

Instrumented Binary

mpirun

T0 T1 T2 T3

… … … …
main main main main
MPI_Init MPI_Init MPI_Init MPI_Init
MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank
MPI_Comm_size MPI_Comm_size MPI_Comm_size MPI_Comm_size
… … … …
oddEvenSort oddEvenSort oddEvenSort oddEvenSort
… … … …
findPtr findPtr findPtr findPtr
MPI_Send MPI_Recv MPI_Send MPI_Recv
MPI_Recv MPI_Send MPI_Recv MPI_Send
… … … …
MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize
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DiffTrace Overview

Data Summarization
Classification



Preprocessing
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Filter Class Sub-class Example

Primary
Returns Filter out Returns

PLT Procedure Linkage Table

MPI

MPI ALL Functions start with "MPI_"

MPI Collectives MPI_Barrier
MPI Send/Recv MPI_Send, MPI_Isend

MPI Library Inner MPI library

OMP
OMP ALL Functions start with “GOMP_”

OMP Critical OMP_Critical_Start

OMP Mutex OMP_Mutex

Secondary

Memory Memcpy

Network TCP

Poll Poll, yield

String strlen
Advanced Custom Any source-code function

Data Pre-processing 



Loop Summarization

• Programs are (nested) loops!

• Loops reflect as sequences of repetitive patterns

• Why detecting/summarizing loops?

• Easy-to-read representation of long traces

• Reveal unfinished or broken loops due to a fault
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Loop Summarization



Loop Summarization

Adapted from NLR algorithm [Ketterlin’14]

Convert each trace to its equivalent NLR (Nested Loop Representation)
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Nested Loop Recognition (NLR)

Push elements of the trace to a stack one by one

On each push:

Recursively examine the upper elements of the stack to

Form the loop structure from elements or

Extend the existing loop structure



MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
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MPI_Init
MPI_Comm_rank
MPI_Comm_size
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Finalize

Trace to NLR

MPI_Init
MPI_Comm_rank
MPI_Comm_size
(MPI_Send - MPI_Recv , 4)
MPI_Finalize



Loop Summarization
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T0 T1 T2 T3

MPI_Init MPI_Init MPI_Init MPI_Init
MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank
MPI_Comm_size MPI_Comm_size MPI_Comm_size MPI_Comm_size
L0 ^ 2 L1 ^ 4 L0 ^ 4 L1 ^ 2
MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize

Loop Table
L0 MPI_Send - MPI_Recv
L1 MPI_Recv - MPI_Send

Trace to NLR



Loop Summarization
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Hierarchical Clustering via FCA 

• Few equivalence classes of threads/processes in HPC applications
• Master/worker, Odd/Even, Producer/Consumer

• Clustering based on this property
• Distinguish between structurally different threads
• Reduce the search space for bug location
• Detect mis-behaved traces (i.e., outliers)

• STAT: Prefix trees; AutomaDeD: Markov model

• DiffTrace Approach: Formal Concept Analysis (FCA)



FCA
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• Formal Concept Analysis (FCA) is a way of deriving a concept 
hierarchy from a collection of objects and their attributes.

FCA 
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Concept Lattice & JSM (Jaccard Similarity Matrix)

[R. Godin et al, “Incremental 
concept formation algorithms 
based on galois (concept) lattices”]
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DiffTrace Overview

Diff Similarities



Diff Similarity Matrices
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• Compute how similarity relations among traces of a normal execution 
changes when faults are introduced.

• JSMD = |JSMfaulty - JSMnormal|

• Hierarchical clustering based on JSMD:

• Ranking metric: B-score – The distance between two clusterings

Reveals the traces that have changed the most w.r.t their 
similarity with other traces

Diff Similarity Matrices
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DiffTrace Overview

Visualized 
Diff



27

Potential Bug



diffNLR

28

Deadlock:

• Only after 7 iterations

• Only in process #5

• Suggested Rank: #5

• diffNLR(5normal,5faulty)

Planted Bug



diffNLR
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diffNLR

Legend

Deadlock:

• Only after 7 iterations

• Only in process #5

• Suggested Rank: #5

• diffNLR(5normal,5faulty)



ILCS Case Study
• ILCS: A scalable framework for running iterative local searches on HPC 

platforms. LOC: 276 , Scales up to 32,768 cores
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ILCS Case Study



ILCS Case Study
• ILCS: A scalable framework for running iterative local searches on HPC 

platforms. LOC: 276 , Scales up to 32,768 cores
• Workers: find the local champion

• Masters: globally reduce local champions
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ILCS Case Study



Result #1: Unprotected 
Memory Access
• Worker thread #4 of process #6
• Omitted the critical section
• Results in data race that might produce 

corrupted result
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Result #2: Collective with
Wrong Size

• MPI_Allreduce with wrong size: DL
• Process #2
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• DiffTrace situates HPC debugging around whole program trace 
diffing
• Provides user-selectable filters

• Summarizes loops based on the state-of-the-art algorithms

• Condenses summarized traces into concept lattices

• Obtains similarity matrices and hierarchically clusters traces

• Detects, ranks and highlights most salient differences w.r.t. normal 
execution

• DiffTrace addresses missing features in existing tools 

Summary



Diff Similarity Matrices
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• Optimize DiffTrace components to exploit multi-core CPUs

• Convert ParLOT traces into known formats such as OTF2 to mine 
temporal properties of functions

• Conduct systematic bug injection to evaluate use of concept lattices 
and loop structures as features for bug classification (via ML and NN)

• Take up more challenging and real-world examples to evaluate 
DiffTrace against similar tools, and release it to the community.

Future Work



Thanks.
Any questions?
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