
Saeed Taheri, Ian Briggs, Martin Burtscher, Ganesh Gopalakrishnan

School of Computing, University of Utah

Department of Computer Science, Texas State University

DiffTrace: Efficient Whole-Program Trace
Analysis and Diffing for Debugging

2

Scientific Problems

HPC Developer

Supercomputer

3

Scientific Problems

HPC Developer

Supercomputer Debugging

HPC Debugging is Challenging…

4

• Hierarchy of parallelism

• Heterogeneity of compilers & libraries

• Complex and large code bases

• Debugging iterations are expensive

• Resources (time, CPU cycles, energy, etc.)

• Reproducibility limitations

5

Existing Approaches
Iteratively
•Guess the potential bug
• Pick the right debugger
• Instrumentation / Re-compile
•Re-execute
•Gather limited data for specific bug
•Analyze data

Debugging Approaches

6

Existing Approaches DiffTrace Approach
Iteratively
•Guess the potential bug
• Pick the right debugger
• Instrumentation / Re-compile
•Re-execute
•Gather limited data for specific bug
•Analyze data

Collect one standard set of data
Iteratively (offline):
• Intelligently summarize data
•Compare w/ expected behavior
•Detect outliers
•Visualize points of differences

Debugging Approaches

7

Parallel/HPC Debuggers

• Relative Debugging [DeRose’15]

• Delta Debugging [Choi’02]

• Structural Clustering [Weber’16]

• STAT [Arnold’07]

• AutomaDeD [Laguna’11]

8

DiffTrace Overview

9

DiffTrace Overview

Data
Collection

Data Summarization
Classification

Diff Similarities Visualized
Diff

10

DiffTrace Overview

Data
Collection

ParLOT [ESPT’18]

• Instruments binary using Intel PIN API

• Captures function calls/returns (main/all image)

• Compress traces incrementally on-the-fly

• Avg. compression ratio: 1117.1

• Avg. required bandwidth: 7.8 KB/S

• Avg. overhead on exec. time: 1.94

• Enables offline analysis of the whole program 11

12

A Walk-through Example

Sample Trace (mpirun –np 4 pin –t parlot.so -- ./oddeven)

13

Tracing (mpirun –np 4 pin –t parlot.so -- ./oddeven)

Core 0 Core 1 Core 2 Core 3

Compression Compression Compression Compression

Trace 0 Trace 2Trace 1 Trace 3

Instrumented Binary

mpirun

Sample Trace (mpirun –np 4 pin –t parlot.so -- ./oddeven)

14

Tracing (mpirun –np 4 pin –t parlot.so -- ./oddeven)

Core 0 Core 1 Core 2 Core 3

Compression Compression Compression Compression

Trace 0 Trace 2Trace 1 Trace 3

Instrumented Binary

mpirun

T0 T1 T2 T3

… … … …
main main main main
MPI_Init MPI_Init MPI_Init MPI_Init
MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank
MPI_Comm_size MPI_Comm_size MPI_Comm_size MPI_Comm_size
… … … …
oddEvenSort oddEvenSort oddEvenSort oddEvenSort
… … … …
findPtr findPtr findPtr findPtr
MPI_Send MPI_Recv MPI_Send MPI_Recv
MPI_Recv MPI_Send MPI_Recv MPI_Send
… … … …
MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize

15

DiffTrace Overview

Data Summarization
Classification

Preprocessing

16

Filter Class Sub-class Example

Primary
Returns Filter out Returns

PLT Procedure Linkage Table

MPI

MPI ALL Functions start with "MPI_"

MPI Collectives MPI_Barrier
MPI Send/Recv MPI_Send, MPI_Isend

MPI Library Inner MPI library

OMP
OMP ALL Functions start with “GOMP_”

OMP Critical OMP_Critical_Start

OMP Mutex OMP_Mutex

Secondary

Memory Memcpy

Network TCP

Poll Poll, yield

String strlen
Advanced Custom Any source-code function

Data Pre-processing

Loop Summarization

• Programs are (nested) loops!

• Loops reflect as sequences of repetitive patterns

• Why detecting/summarizing loops?

• Easy-to-read representation of long traces

• Reveal unfinished or broken loops due to a fault

17

Loop Summarization

Loop Summarization

Adapted from NLR algorithm [Ketterlin’14]

Convert each trace to its equivalent NLR (Nested Loop Representation)

18

Nested Loop Recognition (NLR)

Push elements of the trace to a stack one by one

On each push:

Recursively examine the upper elements of the stack to

Form the loop structure from elements or

Extend the existing loop structure

MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv

19

MPI_Init
MPI_Comm_rank
MPI_Comm_size
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Send
MPI_Recv
MPI_Finalize

Trace to NLR

MPI_Init
MPI_Comm_rank
MPI_Comm_size
(MPI_Send - MPI_Recv , 4)
MPI_Finalize

Loop Summarization

20

T0 T1 T2 T3

MPI_Init MPI_Init MPI_Init MPI_Init
MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank MPI_Comm_rank
MPI_Comm_size MPI_Comm_size MPI_Comm_size MPI_Comm_size
L0 ^ 2 L1 ^ 4 L0 ^ 4 L1 ^ 2
MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize

Loop Table
L0 MPI_Send - MPI_Recv
L1 MPI_Recv - MPI_Send

Trace to NLR

Loop Summarization

21

Hierarchical Clustering via FCA

• Few equivalence classes of threads/processes in HPC applications
• Master/worker, Odd/Even, Producer/Consumer

• Clustering based on this property
• Distinguish between structurally different threads
• Reduce the search space for bug location
• Detect mis-behaved traces (i.e., outliers)

• STAT: Prefix trees; AutomaDeD: Markov model

• DiffTrace Approach: Formal Concept Analysis (FCA)

FCA

22

• Formal Concept Analysis (FCA) is a way of deriving a concept
hierarchy from a collection of objects and their attributes.

FCA

23

Concept Lattice & JSM (Jaccard Similarity Matrix)

[R. Godin et al, “Incremental
concept formation algorithms
based on galois (concept) lattices”]

24

DiffTrace Overview

Diff Similarities

Diff Similarity Matrices

25

• Compute how similarity relations among traces of a normal execution
changes when faults are introduced.

• JSMD = |JSMfaulty - JSMnormal|

• Hierarchical clustering based on JSMD:

• Ranking metric: B-score – The distance between two clusterings

Reveals the traces that have changed the most w.r.t their
similarity with other traces

Diff Similarity Matrices

26

DiffTrace Overview

Visualized
Diff

27

Potential Bug

diffNLR

28

Deadlock:

• Only after 7 iterations

• Only in process #5

• Suggested Rank: #5

• diffNLR(5normal,5faulty)

Planted Bug

diffNLR

29

diffNLR

Legend

Deadlock:

• Only after 7 iterations

• Only in process #5

• Suggested Rank: #5

• diffNLR(5normal,5faulty)

ILCS Case Study
• ILCS: A scalable framework for running iterative local searches on HPC

platforms. LOC: 276 , Scales up to 32,768 cores

30

ILCS Case Study

ILCS Case Study
• ILCS: A scalable framework for running iterative local searches on HPC

platforms. LOC: 276 , Scales up to 32,768 cores
• Workers: find the local champion

• Masters: globally reduce local champions

31

ILCS Case Study

Result #1: Unprotected
Memory Access
• Worker thread #4 of process #6
• Omitted the critical section
• Results in data race that might produce

corrupted result

32

Result #1: Unprotected
Memory Access
• Worker thread #4 of process #6
• Omitted the critical section
• Results in data race that might produce

corrupted result

33

Result #1: Unprotected
Memory Access
• Worker thread #4 of process #6
• Omitted the critical section
• Results in data race that might produce

corrupted result

34

Result #2: Collective with
Wrong Size

• MPI_Allreduce with wrong size: DL
• Process #2

35

Result #2: Collective with
Wrong Size

• MPI_Allreduce with wrong size: DL
• Process #2

36

Result #2: Collective with
Wrong Size

• MPI_Allreduce with wrong size: DL
• Process #2

37

38

• DiffTrace situates HPC debugging around whole program trace
diffing
• Provides user-selectable filters

• Summarizes loops based on the state-of-the-art algorithms

• Condenses summarized traces into concept lattices

• Obtains similarity matrices and hierarchically clusters traces

• Detects, ranks and highlights most salient differences w.r.t. normal
execution

• DiffTrace addresses missing features in existing tools

Summary

Diff Similarity Matrices

39

• Optimize DiffTrace components to exploit multi-core CPUs

• Convert ParLOT traces into known formats such as OTF2 to mine
temporal properties of functions

• Conduct systematic bug injection to evaluate use of concept lattices
and loop structures as features for bug classification (via ML and NN)

• Take up more challenging and real-world examples to evaluate
DiffTrace against similar tools, and release it to the community.

Future Work

Thanks.
Any questions?

40

